cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052143 E.g.f.: exp(x)/sqrt(1-4*x).

Original entry on oeis.org

1, 3, 17, 163, 2241, 39971, 874513, 22652547, 677742593, 22996109251, 872449527441, 36595485309923, 1681600030358977, 84005018253431523, 4532832802360066961, 262732854317051785411, 16280199853832658463233, 1073958487530496802770307
Offset: 0

Views

Author

N. J. A. Sloane, Jan 23 2000

Keywords

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see page 191.

Crossrefs

Cf. A000984.

Programs

  • Maple
    A052143 := n -> KummerU(1/2, n+3/2, 1/4)/2:
    seq(simplify(A052143(n)), n=0..17); # Peter Luschny, Dec 18 2017
  • Mathematica
    CoefficientList[Series[E^x/Sqrt[1-4*x], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 27 2013 *)
  • Maxima
    makelist(sum(binomial(n,k)*binomial(2*k,k)*(k)!,k,0,n),n,0,12); /* Emanuele Munarini, Dec 17 2017 */
    
  • PARI
    x='x+O('x^99); Vec(serlaplace(exp(x)/sqrt(1-4*x))) \\ Altug Alkan, Dec 17 2017

Formula

a(n) = n!*Sum_{k=0..n} A000984(k)/(n-k)!. - Vladimir Kruchinin, Sep 10 2010
a(n) = Sum_{k=0..n} binomial(n,k)*(2*k)!/k!. - Vladimir Kruchinin, Sep 10 2010
a(n) ~ sqrt(2)*4^n*n^n/exp(n-1/4). - Vaclav Kotesovec, Jun 27 2013
D-finite with recurrence: a(n) - (4*n-1)*a(n-1) + 4*(n-1)*a(n-2) = 0. - R. J. Mathar, Sep 27 2013
a(n) = U(1/2, n+3/2, 1/4)/2 where U denotes the Kummer U function. - Peter Luschny, Nov 26 2014
From Peter Bala, Nov 21 2017: (Start)
a(n+k) = a(n) (mod k) for all n and k. It follows that the sequence a(n) taken modulo k is periodic with the exact period dividing k. For example, modulo 10 the sequence becomes 1, 3, 7, 3, 1, 1, 3, 7, 3, 1, ... with exact period 5.
The e.g.f. A(x) = 1/sqrt(1 - 4*x)*exp(x) satisfies the differential equation (1 - 4*x)A' - (3 - 4*x)*A = 0 with A(0) = 1. Mathar's recurrence above follows from this. (End)