cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052150 Partial sums of A000340, second partial sums of A003462.

Original entry on oeis.org

1, 6, 24, 82, 261, 804, 2440, 7356, 22113, 66394, 199248, 597822, 1793557, 5380776, 16142448, 48427480, 145282593, 435847950, 1307544040, 3922632330, 11767897221, 35303691916, 105911076024, 317733228372, 953199685441
Offset: 0

Views

Author

Barry E. Williams, Jan 23 2000

Keywords

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 189, 194-196.
  • P. Ribenhoim, The Little Book of Big Primes, Springer-Verlag, N.Y., 1991, p. 53.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{6,-12,10,-3},{1,6,24,82},40] (* Harvey P. Dale, Sep 05 2013 *)

Formula

a(n) = ((3^(n+3)) - (2*(n^2) + 12n + 19))/8.
a(n) = 3a(n-1)+C(n+2,2); a(0)=1.
a(n) = sum{k=0..n, binomial(n+3, k+3)2^k}. - Paul Barry, Aug 20 2004
From Colin Barker, Dec 18 2012: (Start)
a(n) = 6*a(n-1) - 12*a(n-2) + 10*a(n-3) - 3*a(n-4).
G.f.: 1/((x-1)^3*(3*x-1)). (End)