A052150 Partial sums of A000340, second partial sums of A003462.
1, 6, 24, 82, 261, 804, 2440, 7356, 22113, 66394, 199248, 597822, 1793557, 5380776, 16142448, 48427480, 145282593, 435847950, 1307544040, 3922632330, 11767897221, 35303691916, 105911076024, 317733228372, 953199685441
Offset: 0
References
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 189, 194-196.
- P. Ribenhoim, The Little Book of Big Primes, Springer-Verlag, N.Y., 1991, p. 53.
Links
- Index entries for linear recurrences with constant coefficients, signature (6,-12,10,-3).
Programs
-
Mathematica
LinearRecurrence[{6,-12,10,-3},{1,6,24,82},40] (* Harvey P. Dale, Sep 05 2013 *)
Formula
a(n) = ((3^(n+3)) - (2*(n^2) + 12n + 19))/8.
a(n) = 3a(n-1)+C(n+2,2); a(0)=1.
a(n) = sum{k=0..n, binomial(n+3, k+3)2^k}. - Paul Barry, Aug 20 2004
From Colin Barker, Dec 18 2012: (Start)
a(n) = 6*a(n-1) - 12*a(n-2) + 10*a(n-3) - 3*a(n-4).
G.f.: 1/((x-1)^3*(3*x-1)). (End)