A052161 Partial sums of A014825, second partial sums of A002450.
1, 7, 34, 146, 599, 2417, 9696, 38820, 155325, 621355, 2485486, 9942022, 39768179, 159072821, 636291404, 2545165752, 10180663161, 40722652815, 162890611450, 651562446010
Offset: 0
References
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (7,-15,13,-4)
Programs
-
Magma
[((2^(2*n+7))-(9*(n^2)+51*n+74))/54: n in [0..25]]; // Vincenzo Librandi, Apr 28 2012
-
Mathematica
CoefficientList[Series[1/((1-x)^3*(1-4*x)),{x,0,25}],x] (* Vincenzo Librandi, Apr 28 2012 *)
Formula
a(n) = ((2^(2n+7)) - (9*(n^2) + 51n + 74))/54.
a(n) = 4a(n-1) + C(n+2,2); a(0)=1.
a(n) = Sum_{k=0..n, binomial(n+3, k+3)3^k}. - Paul Barry, Aug 20 2004
G.f.: 1/((1-x)^3*(1-4*x)). - Colin Barker, Jan 12 2012