cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A014825 a(n) = 4*a(n-1) + n with n > 1, a(1)=1.

Original entry on oeis.org

1, 6, 27, 112, 453, 1818, 7279, 29124, 116505, 466030, 1864131, 7456536, 29826157, 119304642, 477218583, 1908874348, 7635497409, 30541989654, 122167958635, 488671834560, 1954687338261, 7818749353066
Offset: 1

Views

Author

Keywords

Examples

			G.f. = x + 6*x^2 + 27*x^3 + 112*x^4 + 453*x^5 + 1818*x^6 + 7279*x^7 + ...
		

Crossrefs

Cf. A002450 (first differences), A052161 (partial sums).
Cf. A171654 (mod 10).

Programs

  • Magma
    [(4^(n+1)-3*n-4)/9: n in [1..30]]; // Vincenzo Librandi, Aug 23 2011
    
  • Mathematica
    RecurrenceTable[{a[1]==1,a[n]==4a[n-1]+n},a[n],{n,30}] (* Harvey P. Dale, Oct 12 2011 *)
    a[ n_]:= SeriesCoefficient[x/((1-4x)(1-x)^2), {x, 0, n}] (* Michael Somos, Jun 20 2012 *)
  • PARI
    {a(n) = polcoeff( x / ((1 - x)^2 * (1 - 4*x)) + x * O(x^n), n)} /* Michael Somos, Jun 20 2012 */
    
  • Python
    def A014825(n): return (((1<<(n+1<<1))-4)//3-n)//3 # Chai Wah Wu, Nov 12 2024
  • Sage
    [(4^(n+1) -3*n -4)/9 for n in (1..30)] # G. C. Greubel, Feb 18 2020
    

Formula

a(n) = (4^(n+1) - 3*n - 4)/9.
G.f.: x/((1-4*x)*(1-x)^2).
a(n) = Sum_{k=0..n} (n-k)*4^k = Sum_{k=0..n} k*4^(n-k). - Paul Barry, Jul 30 2004
a(n) = Sum_{k=0..n} binomial(n+2, k+2)*3^k [Offset 0]. - Paul Barry, Jul 30 2004
a(n) = Sum_{k=0..n} Sum_{j=0..2k} (-1)^(j+1)*J(j)*J(2k-j), J(n) = A001045(n). - Paul Barry, Oct 23 2009
Convolution square of A006314. - Michael Somos, Jun 20 2012
E.g.f.: (4*exp(4*x) - (4+3*x)*exp(x))/9. - G. C. Greubel, Feb 18 2020
a(n) = A014916(-n-1)*4^(n+1) = A091919(2*n-2) for all n in Z. - Michael Somos, Oct 02 2020
a(n) = Sum_{k=0..n} A002450(k). - Joseph Brown, May 11 2021
Last digits give A171654. - Paul Curtz, Oct 10 2021

A097788 a(n)=4a(n-1)+C(n+3,3),n>0, a(0)=1.

Original entry on oeis.org

1, 8, 42, 188, 787, 3204, 12900, 51720, 207045, 828400, 3313886, 13255908, 53024087, 212096908, 848388312, 3393554064, 13574217225, 54296870040, 217187481490, 868749927500, 3474999711771, 13899998849108, 55599995398732
Offset: 0

Views

Author

Paul Barry, Aug 24 2004

Keywords

Comments

Partial sums of A052161.

Programs

  • Mathematica
    RecurrenceTable[{a[0]==1,a[n]==4a[n-1]+Binomial[n+3,3]},a,{n,30}] (* or *) LinearRecurrence[{8,-22,28,-17,4},{1,8,42,188,787},30] (* Harvey P. Dale, May 04 2014 *)

Formula

G.f.: 1/((1-4x)(1-x)^4); a(n)=4^(n+4)/81-(9n^3+90n^2+303n+350)/162; a(n)=sum{k=0..n, binomial(n+4, k+4)3^k}.
a(0)=1, a(1)=8, a(2)=42, a(3)=188, a(4)=787, a(n)=8*a(n-1)- 22*a(n-2)+ 28*a(n-3)- 17*a(n-4)+4*a(n-5). - Harvey P. Dale, May 04 2014

A262592 a(n) = (3^(n+1) - 2n^2 + 4n + 5) / 8.

Original entry on oeis.org

1, 2, 4, 10, 29, 88, 268, 812, 2449, 7366, 22124, 66406, 199261, 597836, 1793572, 5380792, 16142465, 48427498, 145282612, 435847970, 1307544061, 3922632352, 11767897244, 35303691940, 105911076049, 317733228398, 953199685468, 2859599056702, 8578797170429, 25736391511636
Offset: 0

Views

Author

N. J. A. Sloane, Oct 21 2015

Keywords

Crossrefs

Other sequences with generating functions like this: A000340, A052161, A262593, A262594.

Programs

  • Maple
    f1:=(a,b)->(1-a*x)^a/((1-x)^b*(1-b*x));
    f2:=(a,b)->seriestolist(series(f1(a,b),x,40));
    f2(2,3);
  • Mathematica
    Table[3^(n + 1)/8 + 5/8 - n^2/4 + n/2, {n, 0, 29}] (* Michael De Vlieger, Oct 23 2015 *)
    LinearRecurrence[{6,-12,10,-3},{1,2,4,10},30] (* Harvey P. Dale, Jul 18 2025 *)
  • PARI
    a(n) = 3^(n+1)/8+5/8-n^2/4+n/2 \\ Colin Barker, Oct 23 2015
    
  • PARI
    Vec((1-2*x)^2/((1-x)^3*(1-3*x)) + O(x^40)) \\ Colin Barker, Oct 23 2015

Formula

G.f.: (1-2*x)^2/((1-x)^3*(1-3*x)).
a(n) = 6*a(n-1)-12*a(n-2)+10*a(n-3)-3*a(n-4) for n>3. - Colin Barker, Oct 23 2015

A326294 Number of connected simple graphs on a subset of {1..n} with no crossing or nesting edges.

Original entry on oeis.org

1, 1, 2, 8, 35, 147, 600, 2418
Offset: 0

Views

Author

Gus Wiseman, Jun 29 2019

Keywords

Comments

Two edges {a,b}, {c,d} are crossing if a < c < b < d or c < a < d < b, and nesting if a < c < d < b or c < a < b < d.

Examples

			The a(4) = 35 edge-sets:
  {}  {12}  {12,13}  {12,13,14}  {12,13,14,34}
      {13}  {12,14}  {12,13,23}  {12,13,23,34}
      {14}  {12,23}  {12,13,34}  {12,14,24,34}
      {23}  {12,24}  {12,14,24}  {12,23,24,34}
      {24}  {13,14}  {12,14,34}
      {34}  {13,23}  {12,23,24}
            {13,34}  {12,23,34}
            {14,24}  {12,24,34}
            {14,34}  {13,14,34}
            {23,24}  {13,23,34}
            {23,34}  {14,24,34}
            {24,34}  {23,24,34}
		

Crossrefs

The inverse binomial transform is the covering case A326339.
Covering graphs with no crossing or nesting edges are A326329.
Connected simple graphs are A001349.
Graphs without crossing or nesting edges are A326244.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Length[csm[#]]<=1&&!MatchQ[#,{_,{x_,y_},_,{z_,t_},_}/;x
    				

Formula

Conjecture: a(n) = A052161(n - 2) + 1.

A368529 a(n) = Sum_{k=1..n} k^2 * 4^(n-k).

Original entry on oeis.org

0, 1, 8, 41, 180, 745, 3016, 12113, 48516, 194145, 776680, 3106841, 12427508, 49710201, 198841000, 795364225, 3181457156, 12725828913, 50903315976, 203613264265, 814453057460, 3257812230281, 13031248921608, 52124995686961, 208499982748420, 833999930994305
Offset: 0

Views

Author

Seiichi Manyama, Dec 28 2023

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{7, -15, 13, -4}, {0, 1, 8, 41}, 30] (* Paolo Xausa, Jan 29 2024 *)
  • PARI
    a(n) = sum(k=1, n, k^2*4^(n-k));

Formula

G.f.: x * (1+x)/((1-4*x) * (1-x)^3).
a(n) = 7*a(n-1) - 15*a(n-2) + 13*a(n-3) - 4*a(n-4).
a(n) = A052161(n-1) + A052161(n-2) for n > 1.
a(n) = (5*4^(n+1) - (9*n^2 + 24*n + 20))/27.
a(0) = 0; a(n) = 4*a(n-1) + n^2.

A368534 a(n) = Sum_{k=1..n} binomial(k+1,2) * n^(n-k).

Original entry on oeis.org

0, 1, 5, 24, 146, 1215, 13431, 186816, 3130436, 61291125, 1371742105, 34522712136, 964626945558, 29621465864627, 991330604373851, 35906022352657920, 1399219698628043016, 58367293868445147657, 2594796705962971336125, 122463905297217627859000
Offset: 0

Views

Author

Seiichi Manyama, Dec 29 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[k+1,2]n^(n-k),{k,n}],{n,0,20}] (* Harvey P. Dale, May 14 2025 *)
  • PARI
    a(n) = sum(k=1, n, binomial(k+1, 2)*n^(n-k));

Formula

a(n) = [x^n] x/((1-n*x) * (1-x)^3).
a(n) = n * (2*n^(n+1) - n^3 - n^2 + n - 1)/(2 * (n-1)^3) for n > 1.

A229611 Expansion of 1/((1-x)^3*(1-11x)).

Original entry on oeis.org

1, 14, 160, 1770, 19485, 214356, 2357944, 25937420, 285311665, 3138428370, 34522712136, 379749833574, 4177248169405, 45949729863560, 505447028499280, 5559917313492216, 61159090448414529, 672749994932559990, 7400249944258160080, 81402749386839761090
Offset: 0

Views

Author

Yahia Kahloune, Sep 26 2013

Keywords

Comments

This sequence was chosen to illustrate a method of matching generating functions and closed-form solutions: The general term associated with the generating function 1/((1-s*x)^3*(1-r*x)) with r>s>=1 is a(n) = [r^(n+3) - s^(n+1)*(s^2 + (r-s)*s*binomial(n+3,1) +(r-s)^2*binomial(n+3,2))] / (r-s)^3 .

Examples

			a(3) = (11^6 - (50*3^2+260*3 + 331))/1000 = 1770 .
		

Crossrefs

Programs

  • Magma
    [(11^(n+3) - (50*n^2 + 260*n + 331))/1000: n in [0..25]]; // Vincenzo Librandi, Sep 27 2013
  • Mathematica
    CoefficientList[Series[1/((1 - x)^3 (1 - 11 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Sep 27 2013 *)
    LinearRecurrence[{14,-36,34,-11},{1,14,160,1770},30] (* Harvey P. Dale, Apr 09 2016 *)

Formula

a(n) = (11^(n+3) - (1 + 10*C(n+3,1) + 100*C(n+3,2)))/1000 = (11^(n+3) - (50*n^2 + 260*n + 331))/1000.
a(n) = 14*a(n-1) -36*a(n-2) +34*a(n-3) -11*a(n-4). - Vincenzo Librandi, Sep 27 2013
Showing 1-7 of 7 results.