A262593 Expansion of (1-3*x)^3/((1-x)^4*(1-4*x)).
1, -1, -3, -1, 13, 63, 237, 879, 3357, 13135, 52061, 207519, 829037, 3314719, 13256973, 53025423, 212098557, 848390319, 3393556477, 13574220095, 54296873421, 217187485439, 868749932077, 3474999717039, 13899998855133, 55599995405583, 222399981605277, 889599926401759, 3558399705585197
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (8,-22,28,-17,4).
Crossrefs
Cf. A262592.
Programs
-
PARI
Vec((1-3*x)^3/((1-x)^4*(1-4*x)) + O(x^40)) \\ Michel Marcus, Oct 23 2015
-
PARI
a(n) = (77+4^(1+n)-84*n-126*n^2+36*n^3)/81 \\ Colin Barker, Oct 23 2015
Formula
a(n + 1) = (1/3)*(12*a(n) - 4*n^3 + 18*n^2 + 4*n - 15), a(0) = 1. - Ilya Gutkovskiy, Oct 22 2015
From Colin Barker, Oct 23 2015: (Start)
a(n) = 8*a(n-1)-22*a(n-2)+28*a(n-3)-17*a(n-4)+4*a(n-5) for n>4.
a(n) = (77+4^(1+n)-84*n-126*n^2+36*n^3)/81.
(End)
Comments