A052181 Partial sums of A050483.
1, 12, 72, 300, 990, 2772, 6864, 15444, 32175, 62920, 116688, 206856, 352716, 581400, 930240, 1449624, 2206413, 3287988, 4807000, 6906900, 9768330, 13616460, 18729360, 25447500, 34184475, 45439056, 59808672, 78004432, 100867800, 129389040, 164727552, 208234224
Offset: 0
References
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
Links
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
Programs
-
Maple
a:=n->(sum((numbcomp(n,8)), j=7..n))/2:seq(a(n), n=8..31); # Zerinvary Lajos, Aug 26 2008
-
Mathematica
Table[(n + 2)*Binomial[n + 7, 7]/2, {n, 0, 40}] (* Amiram Eldar, Feb 11 2022 *) LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{1,12,72,300,990,2772,6864,15444,32175},40] (* Harvey P. Dale, Sep 06 2024 *)
Formula
a(n) = A027819(n+1)/7.
a(n) = (n+2)*C(n+7, 7)/2.
G.f.: (1+3*x)/(1-x)^9.
a(n) = C(n+2, 2)*C(n+7, 6)/7. - Zerinvary Lajos, Jul 29 2005
From Amiram Eldar, Feb 11 2022: (Start)
Sum_{n>=0} 1/a(n) = 41783/300 - 14*Pi^2.
Sum_{n>=0} (-1)^n/a(n) = 7*Pi^2 - 2688*log(2)/5 + 91343/300. (End)