cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052181 Partial sums of A050483.

Original entry on oeis.org

1, 12, 72, 300, 990, 2772, 6864, 15444, 32175, 62920, 116688, 206856, 352716, 581400, 930240, 1449624, 2206413, 3287988, 4807000, 6906900, 9768330, 13616460, 18729360, 25447500, 34184475, 45439056, 59808672, 78004432, 100867800, 129389040, 164727552, 208234224
Offset: 0

Views

Author

Barry E. Williams, Jan 26 2000

Keywords

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Cf. A093561 ((4, 1) Pascal, column m=8).

Programs

  • Maple
    a:=n->(sum((numbcomp(n,8)), j=7..n))/2:seq(a(n), n=8..31); # Zerinvary Lajos, Aug 26 2008
  • Mathematica
    Table[(n + 2)*Binomial[n + 7, 7]/2, {n, 0, 40}] (* Amiram Eldar, Feb 11 2022 *)
    LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{1,12,72,300,990,2772,6864,15444,32175},40] (* Harvey P. Dale, Sep 06 2024 *)

Formula

a(n) = A027819(n+1)/7.
a(n) = (n+2)*C(n+7, 7)/2.
G.f.: (1+3*x)/(1-x)^9.
a(n) = C(n+2, 2)*C(n+7, 6)/7. - Zerinvary Lajos, Jul 29 2005
From Amiram Eldar, Feb 11 2022: (Start)
Sum_{n>=0} 1/a(n) = 41783/300 - 14*Pi^2.
Sum_{n>=0} (-1)^n/a(n) = 7*Pi^2 - 2688*log(2)/5 + 91343/300. (End)