cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052226 Partial sums of A050404.

Original entry on oeis.org

1, 15, 92, 372, 1170, 3102, 7260, 15444, 30459, 56485, 99528, 167960, 273156, 430236, 658920, 984504, 1438965, 2062203, 2903428, 4022700, 5492630, 7400250, 9849060, 12961260, 16880175, 21772881, 27833040, 35283952, 44381832, 55419320, 68729232, 84688560, 103722729, 126310119
Offset: 0

Views

Author

Barry E. Williams, Jan 29 2000

Keywords

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
  • Murray R. Spiegel, Calculus of Finite Differences and Difference Equations, "Schaum's Outline Series", McGraw-Hill, 1971, pp. 10-20, 79-94.

Crossrefs

Cf. A050404.
Cf. A093565 ((8, 1) Pascal, column m=7).

Programs

  • GAP
    List([0..40], n-> (8*n+7)*Binomial(n+6, 6)/7); # G. C. Greubel, Aug 29 2019
  • Magma
    [(8*n+7)*Binomial(n+6, 6)/7: n in [0..40]]; // G. C. Greubel, Aug 29 2019
    
  • Maple
    seq((8*n+7)*Binomial(n+6, 6)/7, n=0..40); # G. C. Greubel, Aug 29 2019
  • Mathematica
    Table[(8*n+7)*Binomial[n+6, 6]/7, {n,0,40}] (* G. C. Greubel, Aug 29 2019 *)
    LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{1,15,92,372,1170,3102,7260,15444},40] (* Harvey P. Dale, Aug 12 2021 *)
  • PARI
    vector(40, n, (8*n-1)*binomial(n+5, 6)/7) \\ G. C. Greubel, Aug 29 2019
    
  • Sage
    [(8*n+7)*binomial(n+6, 6)/7 for n in (0..40)] # G. C. Greubel, Aug 29 2019
    

Formula

a(n) = (8*n+7)*C(n+6, 6)/7.
G.f.: (1+7*x)/(1-x)^8.
E.g.f.: (5040 +70560*x +158760*x^2 +117600*x^3 +36750*x^4 +5292*x^5 +343*x^6 +8*x^7)*exp(x)/5040. - G. C. Greubel, Aug 29 2019

Extensions

Terms a(25) onward added by G. C. Greubel, Aug 29 2019