A052226 Partial sums of A050404.
1, 15, 92, 372, 1170, 3102, 7260, 15444, 30459, 56485, 99528, 167960, 273156, 430236, 658920, 984504, 1438965, 2062203, 2903428, 4022700, 5492630, 7400250, 9849060, 12961260, 16880175, 21772881, 27833040, 35283952, 44381832, 55419320, 68729232, 84688560, 103722729, 126310119
Offset: 0
References
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
- Murray R. Spiegel, Calculus of Finite Differences and Difference Equations, "Schaum's Outline Series", McGraw-Hill, 1971, pp. 10-20, 79-94.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
Programs
-
GAP
List([0..40], n-> (8*n+7)*Binomial(n+6, 6)/7); # G. C. Greubel, Aug 29 2019
-
Magma
[(8*n+7)*Binomial(n+6, 6)/7: n in [0..40]]; // G. C. Greubel, Aug 29 2019
-
Maple
seq((8*n+7)*Binomial(n+6, 6)/7, n=0..40); # G. C. Greubel, Aug 29 2019
-
Mathematica
Table[(8*n+7)*Binomial[n+6, 6]/7, {n,0,40}] (* G. C. Greubel, Aug 29 2019 *) LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{1,15,92,372,1170,3102,7260,15444},40] (* Harvey P. Dale, Aug 12 2021 *)
-
PARI
vector(40, n, (8*n-1)*binomial(n+5, 6)/7) \\ G. C. Greubel, Aug 29 2019
-
Sage
[(8*n+7)*binomial(n+6, 6)/7 for n in (0..40)] # G. C. Greubel, Aug 29 2019
Formula
a(n) = (8*n+7)*C(n+6, 6)/7.
G.f.: (1+7*x)/(1-x)^8.
E.g.f.: (5040 +70560*x +158760*x^2 +117600*x^3 +36750*x^4 +5292*x^5 +343*x^6 +8*x^7)*exp(x)/5040. - G. C. Greubel, Aug 29 2019
Extensions
Terms a(25) onward added by G. C. Greubel, Aug 29 2019