A052262 Partial sums of A014824.
0, 1, 13, 136, 1370, 13715, 137171, 1371738, 13717416, 137174205, 1371742105, 13717421116, 137174211238, 1371742112471, 13717421124815, 137174211248270, 1371742112482836, 13717421124828513, 137174211248285301, 1371742112482853200, 13717421124828532210
Offset: 0
Examples
From _Peter Bala_, Sep 18 2015: (Start) (1) Repeating digits in the decimal expansion of a(64)^(2/3) = 1.23456790 123456790 123456790 123456790 123456790 123456790 123456775774... * 10^42. (2) 1/a(121)^(1/3) = 9.000 ... 0001826553000 ... 000741399080402000 ... 000(351 ... 301)555 ... 555(733 ... 556)851851851 ... 851851851(945 ... 936)308641975308641975308641975 ... 308641975308641975308641975(30864202 ...). The three blocks of digits [9, 1826553, 741399080402] at the start of the decimal expansion shown above factorize as [3^2, 3*608851, 3*608851^2] showing they are related. These 3 blocks of digits are interlaced with long strings of zeros. There then follows 4 blocks of apparently random digits (enclosed in parentheses above for clarity) interlaced with 3 blocks of repeating digits. The repeating digits are 5, 851 and 308641975. (End)
References
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
Links
- Robert Israel, Table of n, a(n) for n = 0..990
- K. S. Brown, Mock-rational numbers.
- Wikipedia, Schizophrenic Number
- Index entries for linear recurrences with constant coefficients, signature (13,-33,31,-10)
Programs
-
Maple
A052262 := proc(n) 100*(10^n-1)/729 - 10*n/81 - binomial(n+1, 2)/9 ; end proc: seq(A052262(n),n=0..10) ; # R. J. Mathar, Oct 02 2015
-
Mathematica
Table[(1/1458) (2 10^(n + 2) - 81 n^2 - 261 n - 200), {n, 0, 30}] (* Vincenzo Librandi, Sep 20 2015 *)
-
PARI
a(n) = (100*((10^n)-1)/729) - (10*n/81) - binomial(n+1, 2)/9; vector(30, n, a(n-1)) \\ Altug Alkan, Oct 02 2015
Formula
a(n) = 100*(10^n-1)/729 - 10*n/81 - binomial(n+1, 2)/9.
a(n) = 10*a(n-1) + binomial(n+1,2).
G.f. : x/((1-10x)(1-x)^3); a(n) = Sum_{k=0..n-1} binomial(n+1, k+2)9^k. - Paul Barry, Aug 24 2004
Comments