cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052277 a(n) = (4n+2)!/2^(2n+1).

Original entry on oeis.org

1, 90, 113400, 681080400, 12504636144000, 548828480360160000, 49229914688306352000000, 8094874872198213459360000000, 2252447502438386084347676160000000, 997586474354936812896742294502400000000, 669959124447288464805194190141921792000000000
Offset: 0

Views

Author

N. J. A. Sloane, Feb 05 2000

Keywords

Crossrefs

Cf. A002432 (denominators of zeta(2*n)/Pi^(2*n)).
Cf. A068447, A067912, A013662 (zeta(4)).

Programs

  • Mathematica
    Table[(4n+2)!/2^(2n+1), {n, 0, 10}] (* Amiram Eldar, Feb 25 2022 *)
  • PARI
    a(n) = (4*n+2)!/2^(2*n+1); \\ Michel Marcus, Feb 20 2022

Formula

sin(x)*sinh(x) = Sum_{n>=0} (-1)^n*x^(4n+2)/a(n). - Benoit Cloitre, Feb 02 2002
From Amiram Eldar, Feb 25 2022: (Start)
Sum_{n>=0} 1/a(n) = (cosh(sqrt(2)) - cos(sqrt(2)))/2.
Sum_{n>=0} (-1)^n/a(n) = sin(1)*sinh(1). (End)