A047836 "Nullwertzahlen" (or "inverse prime numbers"): n=p1*p2*p3*p4*p5*...*pk, where pi are primes with p1 <= p2 <= p3 <= p4 ...; then p1 = 2 and p1*p2*...*pi >= p(i+1) for all i < k.
2, 4, 8, 12, 16, 24, 32, 36, 40, 48, 56, 60, 64, 72, 80, 84, 96, 108, 112, 120, 128, 132, 144, 160, 168, 176, 180, 192, 200, 208, 216, 224, 240, 252, 256, 264, 280, 288, 300, 312, 320, 324, 336, 352, 360, 384, 392, 396, 400, 408, 416, 420, 432, 440, 448
Offset: 1
Examples
Starting at 24 we divide by 3, 2, then 2, reaching 2.
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Thomas Kantke, Das Spiel Minimum und die Zerlegung natürlicher Zahlen, Spektrum der Wissenschaft, No. 4, 1993, pp. 11-13.
- Andreas Weingartner, Uniform distribution of alpha*n modulo one for a family of integer sequences, arXiv:2303.16819 [math.NT], 2023.
Programs
-
Haskell
import Data.List.Ordered (union) a047836 n = a047836_list !! (n-1) a047836_list = f [2] where f (x:xs) = x : f (xs `union` map (x *) [2..x]) -- Reinhard Zumkeller, Jun 25 2015, Sep 28 2011
-
Mathematica
nMax = 100; A174973 = Select[Range[10*nMax], AllTrue[Rest[dd = Divisors[#]] / Most[dd], Function[r, r <= 2]]&]; a[n_] := 2*A174973[[n]]; Array[a, nMax] (* Jean-François Alcover, Nov 10 2016, after Reinhard Zumkeller *)
Formula
a(n) = 2 * A174973(n). - Reinhard Zumkeller, Sep 28 2011
The number of terms <= x is c*x/log(x) + O(x/(log(x))^2), where c = 0.612415..., and a(n) = C*n*log(n*log(n)) + O(n), where C = 1/c = 1.63287... This follows from the formula just above. - Andreas Weingartner, Jun 30 2021
Extensions
More terms from David W. Wilson
Comments