cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A004114 Number of trees with n nodes and 2-colored internal (non-leaf) nodes.

Original entry on oeis.org

1, 1, 1, 2, 5, 12, 33, 98, 305, 1002, 3424, 12016, 43230, 158516, 590621, 2230450, 8521967, 32889238, 128064009, 502590642, 1986357307, 7900377892, 31602819524, 127076645038, 513419837168, 2083414420394, 8488377206876, 34712566540014, 142443837953632
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    max = 28; etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n - j], {j, 1, n}]/n ]; b]; bb = etr[A004113]; A004113[n_] := If[n <= 1, n, 2*bb[n - 1]]; b[x_] := Sum[A004113[n] x^n, {n, 1, max}]; f[x_] := Sum[a[n] x^n, {n, 0, max}]; a[0] = a[1] = a[2] = 1; coes = CoefficientList[ Series[f[x] - (1 + b[x] - x*b[x] - b[x]^2/2 + b[x^2]/2), {x, 0, max}], x]; Table[a[n], {n, 0, max}] /. Solve[Thread[coes == 0]][[1]] (* Jean-François Alcover, Jan 29 2013, after Alois P. Heinz *)

Formula

G.f.: 1+B(x)-x*B(x)-B(x)^2/2+B(x^2)/2 where B(x) is g.f. of A004113. - Christian G. Bower, Dec 15 1999
a(n) ~ c * d^n / n^(5/2), where d = 4.49415643203339504537343052... (same as for A004113), c = 0.31497820931312537077... . - Vaclav Kotesovec, Sep 12 2014

Extensions

More terms, and new description from Christian G. Bower, Dec 15 1999

A004113 Number of rooted trees with n nodes and 2-colored non-leaf nodes.

Original entry on oeis.org

1, 2, 6, 18, 60, 204, 734, 2694, 10162, 38982, 151920, 599244, 2389028, 9608668, 38945230, 158904230, 652178206, 2690598570, 11151718166, 46412717826, 193891596436, 812748036380, 3417407089470, 14410094628558, 60920843101858, 258169745573158, 1096494947168142
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:= proc(n) option remember; `if`(n=0, 1, (add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n))/n) end end: b:= etr(a): a:= n-> `if`(n<=1, n, 2*b(n-1)): seq(a(n), n=1..30); # Alois P. Heinz, Sep 06 2008
  • Mathematica
    etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n - j], {j, 1, n}]/n ]; b]; b = etr[a]; a[n_] := If[n <= 1, n, 2*b[n - 1]]; Table[a[n], {n, 1, 27}] (* Jean-François Alcover, Jan 29 2013, translated from Alois P. Heinz's Maple program *)

Formula

Shifts left and halves under EULER transform.
a(n) ~ c * d^n / n^(3/2), where d = 4.49415643203339504537343052838796824... and c = 0.368722987377516657464802259... - Vaclav Kotesovec, Feb 28 2014

Extensions

Extended with better description from Christian G. Bower, Apr 15 1998

A052316 Number of labeled rooted trees with n nodes and 2-colored internal (non-leaf) nodes.

Original entry on oeis.org

1, 4, 30, 344, 5370, 106452, 2562182, 72592816, 2367054450, 87320153900, 3595646533182, 163492924997448, 8136172620013802, 439858024910227588, 25670670464821310070, 1608575860476990991712, 107716675117341985862370
Offset: 1

Views

Author

Christian G. Bower, Dec 15 1999

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[j^(n-1)*2^j*(-1)^(n-j)*Binomial[n, j], {j, 1, n}]; a[1] = 1; Table[a[n], {n, 1, 17}] (* Jean-François Alcover, Feb 26 2013, after Vladimir Kruchinin *)
  • Maxima
    a(n):=if n=1 then 1 else sum(j^(n-1)*2^j*(-1)^(n-j)*binomial(n,j),j,1,n); /* Vladimir Kruchinin, Jan 24 2012 */

Formula

Divides by 2n and shifts left under exponential transform.
E.g.f.: -x-LambertW(-2*x*exp(-x)). - Vladeta Jovovic, Sep 17 2003
a(n) = sum(j=1..n, j^(n-1)*2^j*(-1)^(n-j)*binomial(n,j)), n>1, a(1)=1. - Vladimir Kruchinin, Jan 24 2012
a(n) ~ sqrt(1+LambertW(-exp(-1)/2)) * n^(n-1) / (exp(n)*(-LambertW(-exp(-1)/2))^n). - Vaclav Kotesovec, Oct 05 2013
Showing 1-3 of 3 results.