cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052391 Number of 4-element intersecting families (of distinct sets) whose union is an n-element set.

Original entry on oeis.org

0, 0, 4, 349, 9985, 213230, 4000444, 69940479, 1170549895, 19024433560, 302846958634, 4748624978009, 73628721516805, 1132119741733890, 17298702716660824, 263082403948681939, 3986935934969727715
Offset: 1

Views

Author

Vladeta Jovovic, Goran Kilibarda, Mar 11 2000

Keywords

Crossrefs

Programs

  • Magma
    [(15^n - 6*11^n + 12*9^n - 8^n - 22*7^n + 15*6^n + 12*5^n - 17*4^n + 17*3^n - 11*2^n - 6)/24: n in [0..50]]; // G. C. Greubel, Oct 08 2017
  • Mathematica
    Table[(15^n - 6*11^n + 12*9^n - 8^n - 22*7^n + 15*6^n + 12*5^n - 17*4^n + 17*3^n - 11*2^n - 6)/4!, {n, 0, 50}] (* G. C. Greubel, Oct 08 2017 *)
    LinearRecurrence[{71,-2205,39495,-452523,3473673,-18166175,64427005,-150923976,220549356,-178819920,59875200},{0,0,4,349,9985,213230,4000444,69940479,1170549895,19024433560,302846958634},20] (* Harvey P. Dale, May 20 2018 *)
  • PARI
    for(n=0,50, print1((15^n - 6*11^n + 12*9^n - 8^n - 22*7^n + 15*6^n + 12*5^n - 17*4^n + 17*3^n - 11*2^n - 6)/24, ", ")) \\ G. C. Greubel, Oct 08 2017
    

Formula

a(n) = (15^n - 6*11^n + 12*9^n - 8^n - 22*7^n + 15*6^n + 12*5^n - 17*4^n + 17*3^n - 11*2^n - 6)/4!.
G.f.: x^3*(14968800*x^8 - 25752870*x^7 + 16968966*x^6 - 5759365*x^5 + 1095624*x^4 - 115860*x^3 + 5974*x^2 - 65*x - 4)/((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)*(7*x-1)*(8*x-1)*(9*x-1)*(11*x-1)*(15*x-1)). - Colin Barker, Jul 30 2012