A052391 Number of 4-element intersecting families (of distinct sets) whose union is an n-element set.
0, 0, 4, 349, 9985, 213230, 4000444, 69940479, 1170549895, 19024433560, 302846958634, 4748624978009, 73628721516805, 1132119741733890, 17298702716660824, 263082403948681939, 3986935934969727715
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..845
- V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138.
- V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, (English translation), Discrete Mathematics and Applications, 9, (1999), no. 6.
- Index entries for linear recurrences with constant coefficients, signature (71, -2205, 39495, -452523, 3473673, -18166175, 64427005, -150923976, 220549356, -178819920, 59875200).
Programs
-
Magma
[(15^n - 6*11^n + 12*9^n - 8^n - 22*7^n + 15*6^n + 12*5^n - 17*4^n + 17*3^n - 11*2^n - 6)/24: n in [0..50]]; // G. C. Greubel, Oct 08 2017
-
Mathematica
Table[(15^n - 6*11^n + 12*9^n - 8^n - 22*7^n + 15*6^n + 12*5^n - 17*4^n + 17*3^n - 11*2^n - 6)/4!, {n, 0, 50}] (* G. C. Greubel, Oct 08 2017 *) LinearRecurrence[{71,-2205,39495,-452523,3473673,-18166175,64427005,-150923976,220549356,-178819920,59875200},{0,0,4,349,9985,213230,4000444,69940479,1170549895,19024433560,302846958634},20] (* Harvey P. Dale, May 20 2018 *)
-
PARI
for(n=0,50, print1((15^n - 6*11^n + 12*9^n - 8^n - 22*7^n + 15*6^n + 12*5^n - 17*4^n + 17*3^n - 11*2^n - 6)/24, ", ")) \\ G. C. Greubel, Oct 08 2017
Formula
a(n) = (15^n - 6*11^n + 12*9^n - 8^n - 22*7^n + 15*6^n + 12*5^n - 17*4^n + 17*3^n - 11*2^n - 6)/4!.
G.f.: x^3*(14968800*x^8 - 25752870*x^7 + 16968966*x^6 - 5759365*x^5 + 1095624*x^4 - 115860*x^3 + 5974*x^2 - 65*x - 4)/((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)*(7*x-1)*(8*x-1)*(9*x-1)*(11*x-1)*(15*x-1)). - Colin Barker, Jul 30 2012