cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052481 a(n) = 2^n*(binomial(n,2) + 1).

Original entry on oeis.org

1, 2, 8, 32, 112, 352, 1024, 2816, 7424, 18944, 47104, 114688, 274432, 647168, 1507328, 3473408, 7929856, 17956864, 40370176, 90177536, 200278016, 442499072, 973078528, 2130706432, 4647288832, 10099884032, 21877489664, 47244640256, 101737037824, 218506461184
Offset: 0

Views

Author

N. J. A. Sloane, Mar 16 2000

Keywords

Comments

a(n) is the generalized Euler number of an (n+2)-dimensional hypercube: (number of vertices) - (number of edges) + (number of faces) = A000079(n+2) - A001787(n+2) + A001788(n+1). - Amiram Eldar, Nov 08 2019

Crossrefs

Programs

  • GAP
    List([0..30], n-> 2^(n-1)*(n^2-n+2)); # G. C. Greubel, May 16 2019
  • Magma
    [2^n*(Binomial(n,2)+1): n in [0..30]]; // Vincenzo Librandi, Dec 22 2016
    
  • Mathematica
    Table[2^n (Binomial[n, 2]+1), {n,0,30}] (* Vincenzo Librandi, Dec 22 2016 *)
    LinearRecurrence[{6,-12,8},{1,2,8},30] (* Harvey P. Dale, May 16 2019 *)
  • PARI
    {a(n) = 2^(n-1)*(n^2-n+2)}; \\ G. C. Greubel, May 16 2019
    
  • Sage
    [2^(n-1)*(n^2-n+2) for n in (0..30)] # G. C. Greubel, May 16 2019
    

Formula

For the sequence 1, 1, 1, 2, 8, 32, ... we have a(n) = 2^n*(n^2-5n+8)/8. - Paul Barry, Jun 26 2003
From R. J. Mathar, Jan 04 2011: (Start)
a(n) = 6*a(n-1) - 12*a(n-2) + 8*a(n-3).
G.f.: (1-4*x+8*x^2)/(1-2*x)^3. (End)
E.g.f.: (1 + 2*x^2)*exp(2*x). - G. C. Greubel, May 16 2019