cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052528 Expansion of (1 - x)/(1 - 2*x - 2*x^2 + 2*x^3).

Original entry on oeis.org

1, 1, 4, 8, 22, 52, 132, 324, 808, 2000, 4968, 12320, 30576, 75856, 188224, 467008, 1158752, 2875072, 7133632, 17699904, 43916928, 108966400, 270366848, 670832640, 1664466176, 4129863936, 10246994944, 25424785408, 63083832832
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Form the graph with matrix A = [1,1,1,1; 1,0,0,0; 1,0,0,0; 1,0,0,1]. Then a(n) counts closed walks of length n at the degree 5 vertex. - Paul Barry, Oct 02 2004
Equals the INVERT transform of (1, 3, 1, 1, 1, ...). - Gary W. Adamson, Apr 27 2009
a(n) is also the number of vertex-transitive cover graphs of lattice quotients of essential lattice congruences of the weak order on the symmetric group S_{n+1}. See Table 1 in the Hoang/Mütze reference in the Links section. - Torsten Muetze, Nov 28 2019

Crossrefs

Programs

  • GAP
    a:=[1,1,4];; for n in [4..30] do a[n]:=2*a[n-1]+2*a[n-2]-2*a[n-3]; od; a; # G. C. Greubel, May 12 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-x)/(1 -2*x-2*x^2+2*x^3) )); // G. C. Greubel, May 12 2019
    
  • Maple
    spec := [S,{S=Sequence(Prod(Z,Union(Z,Z,Sequence(Z))))},unlabeled]:
    seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    LinearRecurrence[{2,2,-2}, {1,1,4}, 30] (* G. C. Greubel, May 12 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-x)/(1-2*x-2*x^2+2*x^3)) \\ G. C. Greubel, May 12 2019
    
  • Sage
    ((1-x)/(1-2*x-2*x^2+2*x^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 12 2019
    

Formula

G.f.: (1 - x)/(1 - 2*x - 2*x^2 + 2*x^3).
Recurrence: a(1) = 1, a(0) = 1, a(2) = 4, 2*a(n) - 2*a(n+1) - 2*a(n+2) + a(n+3) = 0.
a(n) = Sum_{alpha=RootOf(2*Z^3-2*Z^2-2*Z+1)} (1/37)*(5 - 9*alpha^2 + 12*alpha)* alpha^(-1 - n).
a(n) = 2*a(n-2) + Sum_{i=0..n-1} a(i). - Yuchun Ji, Dec 29 2018

Extensions

More terms from James Sellers, Jun 06 2000