cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052537 Expansion of (1-x)/(1-x-2*x^3).

Original entry on oeis.org

1, 0, 0, 2, 2, 2, 6, 10, 14, 26, 46, 74, 126, 218, 366, 618, 1054, 1786, 3022, 5130, 8702, 14746, 25006, 42410, 71902, 121914, 206734, 350538, 594366, 1007834, 1708910, 2897642, 4913310, 8331130, 14126414, 23953034, 40615294, 68868122, 116774190, 198004778
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Crossrefs

Cf. A003229.

Programs

  • GAP
    a:=[1,0,0];; for n in [4..50] do a[n]:=a[n-1]+2*a[n-3]; od; a; # G. C. Greubel, May 09 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1-x)/(1-x-2*x^3) )); // G. C. Greubel, May 09 2019
    
  • Maple
    spec := [S,{S=Sequence(Prod(Z,Z,Union(Z,Z),Sequence(Z)))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    CoefficientList[Series[(1-x)/(1-x-2x^3),{x,0,50}],x] (*or*) LinearRecurrence[ {1,0,2},{1,0,0},50] (* Vladimir Joseph Stephan Orlovsky, Jan 28 2012 *)
  • PARI
    my(x='x+O('x^50)); Vec((1-x)/(1-x-2*x^3)) \\ G. C. Greubel, May 09 2019
    
  • Sage
    ((1-x)/(1-x-2*x^3)).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, May 09 2019
    

Formula

G.f.: (1-x)/(1 - x - 2*x^3)
a(n) = a(n-1) + 2*a(n-3), with a(0)=1, a(1)=0, a(2)=0.
a(n) = Sum_{alpha = RootOf(-1+x+2*x^3)} (-1/29)*(1 - 10*alpha + 3*alpha^2)*alpha^(-1-n).
a(n) = Sum_{k=1..floor((n-1)/2)} binomial(n-1-2*k, k-1)*2^k, n>=1. - Taras Goy, Sep 18 2019

Extensions

More terms from James Sellers, Jun 05 2000