A052537 Expansion of (1-x)/(1-x-2*x^3).
1, 0, 0, 2, 2, 2, 6, 10, 14, 26, 46, 74, 126, 218, 366, 618, 1054, 1786, 3022, 5130, 8702, 14746, 25006, 42410, 71902, 121914, 206734, 350538, 594366, 1007834, 1708910, 2897642, 4913310, 8331130, 14126414, 23953034, 40615294, 68868122, 116774190, 198004778
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 468
- Index entries for linear recurrences with constant coefficients, signature (1,0,2).
Crossrefs
Cf. A003229.
Programs
-
GAP
a:=[1,0,0];; for n in [4..50] do a[n]:=a[n-1]+2*a[n-3]; od; a; # G. C. Greubel, May 09 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1-x)/(1-x-2*x^3) )); // G. C. Greubel, May 09 2019 -
Maple
spec := [S,{S=Sequence(Prod(Z,Z,Union(Z,Z),Sequence(Z)))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Mathematica
CoefficientList[Series[(1-x)/(1-x-2x^3),{x,0,50}],x] (*or*) LinearRecurrence[ {1,0,2},{1,0,0},50] (* Vladimir Joseph Stephan Orlovsky, Jan 28 2012 *)
-
PARI
my(x='x+O('x^50)); Vec((1-x)/(1-x-2*x^3)) \\ G. C. Greubel, May 09 2019
-
Sage
((1-x)/(1-x-2*x^3)).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, May 09 2019
Formula
G.f.: (1-x)/(1 - x - 2*x^3)
a(n) = a(n-1) + 2*a(n-3), with a(0)=1, a(1)=0, a(2)=0.
a(n) = Sum_{alpha = RootOf(-1+x+2*x^3)} (-1/29)*(1 - 10*alpha + 3*alpha^2)*alpha^(-1-n).
a(n) = Sum_{k=1..floor((n-1)/2)} binomial(n-1-2*k, k-1)*2^k, n>=1. - Taras Goy, Sep 18 2019
Extensions
More terms from James Sellers, Jun 05 2000