cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052550 Expansion of (1-2*x)/(1 - 3*x - x^2 + 2*x^3).

Original entry on oeis.org

1, 1, 4, 11, 35, 108, 337, 1049, 3268, 10179, 31707, 98764, 307641, 958273, 2984932, 9297787, 28961747, 90213164, 281005665, 875306665, 2726499332, 8492793331, 26454265995, 82402592652, 256676457289, 799523432529, 2490441569572
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Programs

  • GAP
    a:=[1,1,4];; for n in [4..30] do a[n]:=3*a[n-1]+a[n-2]-2*a[n-3]; od; a; # G. C. Greubel, May 07 2019
  • Magma
    I:=[1,1,4]; [n le 3 select I[n] else 3*Self(n-1) +Self(n-2) -2*Self(n-3): n in [1..30]]; // G. C. Greubel, May 07 2019
    
  • Maple
    spec := [S,{S=Sequence(Prod(Z,Union(Z,Sequence(Union(Z,Z)))))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    LinearRecurrence[{3,1,-2}, {1,1,4}, 30] (* G. C. Greubel, May 07 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-2*x)/(1-3*x-x^2+2*x^3)) \\ G. C. Greubel, May 07 2019
    
  • Sage
    ((1-2*x)/(1-3*x-x^2+2*x^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 07 2019
    

Formula

G.f.: (1 - 2*x)/(1 - 3*x - x^2 + 2*x^3).
a(n) = 3*a(n-1) + a(n-2) - 2*a(n-3), with a(0)=1, a(1)=1, a(2)=4.
a(n) = Sum((-1/229) * (-5 - 74*alpha + 16*alpha^2) * alpha^(-1-n), alpha = RootOf(1 - 3*z - z^2 + 2*z^3)).

Extensions

More terms from James Sellers, Jun 06 2000