A251268 T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with no 2X2 subblock having x11-x00 less than x10-x01.
11, 26, 35, 57, 114, 108, 120, 313, 480, 337, 247, 772, 1667, 2058, 1049, 502, 1775, 4930, 9109, 8812, 3268, 1013, 3894, 13052, 32636, 49872, 37772, 10179, 2036, 8277, 31936, 100843, 217634, 273607, 161906, 31707, 4083, 17224, 73805, 279718, 790734
Offset: 1
Examples
Some solutions for n=4 k=4 ..0..0..0..0..0....0..1..1..1..1....0..0..0..0..1....0..0..1..0..1 ..1..1..1..1..1....0..0..0..1..1....0..1..1..1..1....0..0..0..1..1 ..1..1..1..1..1....1..1..1..1..1....0..0..0..0..0....0..1..1..1..1 ..1..1..1..1..1....0..0..0..0..0....0..0..1..1..1....0..0..0..0..0 ..0..0..0..0..1....0..0..1..1..1....0..1..0..1..1....0..0..1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..479
Formula
Empirical for column k:
k=1: a(n) = 3*a(n-1) +a(n-2) -2*a(n-3)
k=2: a(n) = 5*a(n-1) -2*a(n-2) -5*a(n-3) +2*a(n-4)
k=3: [order 10]
k=4: [order 16]
k=5: [order 36]
k=6: [order 62]
Empirical for row n:
n=1: a(n) = 4*a(n-1) -5*a(n-2) +2*a(n-3)
n=2: a(n) = 6*a(n-1) -14*a(n-2) +16*a(n-3) -9*a(n-4) +2*a(n-5)
n=3: [order 8]
n=4: [order 10]
n=5: [order 12]
n=6: [order 14]
n=7: [order 16]
Comments