cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A192808 Constant term in the reduction of the polynomial (x^2 + 2)^n by x^3 -> x^2 + 2. See Comments.

Original entry on oeis.org

1, 2, 6, 26, 126, 618, 3022, 14746, 71902, 350538, 1708910, 8331130, 40615294, 198004778, 965298958, 4705957722, 22942154782, 111845982474, 545263681710, 2658231220538, 12959222223038, 63177890368490, 308000415667278, 1501542003033370
Offset: 0

Views

Author

Clark Kimberling, Jul 10 2011

Keywords

Comments

For discussions of polynomial reduction, see A192232 and A192744.
If the reduction (x^2 + c)^n by x^3 -> x^2 + c is applied to the polynomials (x^2+c)^n for c=1 instead of c=2, the results are as follows:
A052554: constant terms,
A052529: coefficients of x,
A124820: coefficients of x^2.
Those three sequences satisfy the recurrence:
u(n) = 4*u(n-1) - 3*u(n-2) + u(n-3).

Crossrefs

Programs

  • GAP
    a:=[1,2,6];; for n in [4..25] do a[n]:=7*a[n-1]-12*a[n-2]+8*a[n-3]; od; Print(a); # Muniru A Asiru, Jan 02 2019
  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1-x)*(1-4*x)/(1-7*x+12*x^2-8*x^3) )); // G. C. Greubel, Jan 02 2019
    
  • Mathematica
    q = x^3; s = x^2 + 2; z = 40;
    p[n_, x_] := (x^2 + 2)^n;
    Table[Expand[p[n, x]], {n, 0, 7}]
    reduce[{p1_, q_, s_, x_}] :=
    FixedPoint[(s PolynomialQuotient @@ #1 +
           PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
    t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
    u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192808 *)
    u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192809 *)
    u3 = Table[Coefficient[Part[t, n], x, 2], {n, 1, z}] (* A192810 *)
    uu = u2/2  (* A192811 *)
    LinearRecurrence[{7,-12,8}, {1,2,6}, 50] (* G. C. Greubel, Jan 02 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-x)*(1-4*x)/(1-7*x+12*x^2-8*x^3)) \\ G. C. Greubel, Jan 02 2019
    
  • Sage
    ((1-x)*(1-4*x)/(1-7*x+12*x^2-8*x^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 02 2019
    

Formula

a(n) = 7*a(n-1) - 12*a(n-2) + 8*a(n-3).
G.f.: (1-x)*(1-4*x)/(1-7*x+12*x^2-8*x^3). - Colin Barker, Jul 26 2012

A192252 0-sequence of reduction of (n!) by x^2 -> x+1.

Original entry on oeis.org

1, 1, 3, 9, 57, 417, 4017, 44337, 568497, 8188977, 131568177, 2326992177, 44958134577, 941649129777, 21254190979377, 514247427715377, 13277149259395377, 364340640790147377, 10588931448837763377, 324919870905259651377, 10496883167091791491377
Offset: 0

Views

Author

Clark Kimberling, Jun 27 2011

Keywords

Comments

See A192232 for definition of "k-sequence of reduction of [sequence] by [substitution]".
After the tenth term, the final digit is 7, for terms in both A192252 and A192253. After the 100th term, the final 6 digits of each term of A192252 are 9,3,1,3,7,7.

Examples

			The sequence (n!)=(1,1,2,6,24,120,...) provides coefficients for the power series 1+x+2x^2+6x^3+..., of which the (n+1)st partial sum is the polynomial p(x)=1+x+2x^2+...+(n!)x^n, of which reduction by x^2 -> x+1 (as presented at A192232) is A192252(n)+x*A192253(n).
		

Crossrefs

Programs

  • Mathematica
    c[n_] := n!; (* A000142 *)
    Table[c[n], {n, 1, 15}]
    q[x_] := x + 1;
    p[0, x_] := 1; p[n_, x_] := p[n - 1, x] + (x^n)*c[n]
    reductionRules = {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x q[x]^((y - 1)/2)};
    t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0, 50}]
    Table[Coefficient[Part[t, n], x, 0], {n, 1, 50}]  (* A192252 *)
    Table[Coefficient[Part[t, n], x, 1], {n, 1, 50}]  (* A192253 *)
    Table[Coefficient[(-7 + Part[t, n])/10, x, 0], {n, 1, 30}]
    (* Peter J. C. Moses, Jun 20 2011 *)

Formula

Conjecture: a(n) +(-n-1)*a(n-1) -n*(n-2)*a(n-2) +n*(n-1)*a(n-3)=0. - R. J. Mathar, May 04 2014
Conjecture: a(n) = Sum_{k=0..n} A052554(k). - Sean A. Irvine, Jul 14 2022
Showing 1-2 of 2 results.