cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A073152 Triangle of numbers relating two simple context-free grammars (A052709 and A052705).

Original entry on oeis.org

1, 1, 2, 3, 4, 7, 9, 12, 15, 24, 31, 40, 49, 58, 89, 113, 144, 171, 198, 229, 342, 431, 544, 637, 718, 811, 924, 1355, 1697, 2128, 2467, 2746, 3025, 3364, 3795, 5492, 6847, 8544, 9837, 10854, 11815, 12832, 14125, 15822, 22669, 28161
Offset: 0

Views

Author

Paul D. Hanna, Jul 29 2002

Keywords

Comments

Sequence A052705 is the convolution of A052709.

Examples

			a(5,0)=a(3,3)+a(4,4)=24+89=113. a(5,3)=1*a(5,0)+1*a(4,0)+3*a(3,0)+9*a(2,0)=1*113+1*31+3*9+9*3=198. Rows: {1}; {1,2}; {3,4,7}; {9,12,15,24}; {31,40,49,58,89}; {113,144,171,198,229,342}; {431,544,637,718,811,924,1355}; {1697,2128,2467,2746,3025,3364,3795,5492}
		

Crossrefs

Formula

Triangle {a(n, k), n >= 0, 0<=k<=n} defined by: a(0, 0)=1, a(n, 0)=A052709(n+1), a(n, n)=A052705(n+2), a(n, 0)=a(n-1, n-1) + a(n-2, n-2), a(n, k)=sum{j=0..k} A052709(j+1) * a(n-j, 0).

A371576 G.f. satisfies A(x) = ( 1 + x*A(x)^(3/2) * (1 + x) )^2.

Original entry on oeis.org

1, 2, 9, 44, 240, 1390, 8404, 52426, 334964, 2180928, 14418123, 96525656, 653077411, 4458529390, 30674865164, 212472058410, 1480446579602, 10369560147798, 72972217926122, 515674254743332, 3657933383804959, 26036659997517572, 185905008055923918
Offset: 0

Views

Author

Seiichi Manyama, Mar 28 2024

Keywords

Crossrefs

Column k=2 of A378323.

Programs

  • PARI
    a(n, r=2, s=1, t=3, u=0) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+r));

Formula

a(n) = 2 * Sum_{k=0..n} binomial(3*k+2,k) * binomial(k,n-k)/(3*k+2).
G.f.: A(x) = B(x)^2 where B(x) is the g.f. of A364475.

A371578 G.f. satisfies A(x) = ( 1 + x*A(x)^(5/2) * (1 + x) )^2.

Original entry on oeis.org

1, 2, 13, 102, 916, 8880, 90607, 958794, 10426089, 115798342, 1308035135, 14980661482, 173553196140, 2030265152576, 23948922940698, 284543368174220, 3402103050539715, 40903437537402792, 494215527894112099, 5997782678374854902, 73078635875447981850
Offset: 0

Views

Author

Seiichi Manyama, Mar 28 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n, r=2, s=1, t=5, u=0) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+r));

Formula

a(n) = 2 * Sum_{k=0..n} binomial(5*k+2,k) * binomial(k,n-k)/(5*k+2).
G.f.: A(x) = B(x)^2 where B(x) is the g.f. of A365184.

A371577 G.f. satisfies A(x) = ( 1 + x*A(x)^2 * (1 + x) )^2.

Original entry on oeis.org

1, 2, 11, 70, 505, 3910, 31772, 267280, 2307982, 20339946, 182207333, 1654250474, 15187764411, 140767293560, 1315349040350, 12377806027892, 117200381305538, 1115791797318548, 10674418686087377, 102563189093302366, 989321056200478417
Offset: 0

Views

Author

Seiichi Manyama, Mar 28 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n, r=2, s=1, t=4, u=0) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+r));

Formula

a(n) = Sum_{k=0..n} binomial(4*k+2,k) * binomial(k,n-k)/(2*k+1).
G.f.: A(x) = B(x)^2 where B(x) is the g.f. of A365178.

A110681 A convolution triangle of numbers based on A071356.

Original entry on oeis.org

1, 2, 1, 6, 4, 1, 20, 16, 6, 1, 72, 64, 30, 8, 1, 272, 260, 140, 48, 10, 1, 1064, 1072, 636, 256, 70, 12, 1, 4272, 4480, 2856, 1288, 420, 96, 14, 1, 17504, 18944, 12768, 6272, 2320, 640, 126, 16, 1, 72896, 80928, 57024, 29952, 12192, 3852, 924, 160, 18, 1
Offset: 0

Views

Author

Philippe Deléham, Sep 14 2005

Keywords

Examples

			Triangle starts:
   1;
   2,  1;
   6,  4,  1;
  20, 16,  6,  1;
  72, 64, 30,  8,  1;
  ...
		

Crossrefs

Cf. A071356 (1st column), A071357 (2nd column).
Cf. A052705 (diagonal sums), A001003 (row sums).

Programs

  • Mathematica
    T[n_, k_] := T[n, k] = Which[n == k == 0, 1, n == 0, 0, k == 0, 0, k > n, 0, True, T[n - 1, k - 1] + 2 T[n - 1, k] + 2 T[n - 1, k + 1]]; Table[T[n, k], {n, 0, 10}, {k, n}] // Flatten (* Michael De Vlieger, Nov 05 2017 *)

Formula

T(0, 0) = 1; T(n, k) = 0 if k<0 or if k>n; T(n, k) = T(n-1, k-1) + 2*T(n-1, k) + 2*T(n-1, k+1).
Sum_{k, k>=0} T(m, k)*T(n, k)*2^k = T(m+n, 0) = A071356(m+n).
Sum_{k, k>=0} T(n, k)*(2^(k+1) - 1) = 5^n.
Sum_{k, k>=0} (-1)^(n-k)*T(n, k)*(2^(k+1) - 1) = 1.

A052728 A simple context-free grammar in a labeled universe.

Original entry on oeis.org

0, 0, 2, 12, 168, 2880, 64080, 1723680, 54633600, 1992936960, 82261267200, 3790579161600, 192895381324800, 10744251136819200, 650181362358528000, 42476922345521664000, 2979716339168464896000, 223385082959833546752000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Programs

  • Maple
    spec := [S,{B=Union(S,Z,C),S=Prod(B,B),C=Prod(S,Z)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);

Formula

E.g.f.: (1/2)/(x^2+1+2*x)*(1-2*x-2*x^2-(1-4*x-4*x^2)^(1/2))
Recurrence: {a(1)=0, a(2)=2, a(3)=12, (-4*n^3-16*n^2-20*n-8)*a(n) +(-8*n^2-26*n-20)*a(n+1) +(-2-3*n)*a(n+2) +a(n+3) =0.
a(n) = n!*A052705(n). - R. J. Mathar, Oct 18 2013

A052744 E.g.f. x*(1-2*x-2*x^2-sqrt(1-4*x-4*x^2))/ (2*(1+x)^2).

Original entry on oeis.org

0, 0, 0, 6, 48, 840, 17280, 448560, 13789440, 491702400, 19929369600, 904873939200, 45486949939200, 2507639957222400, 150419515915468800, 9752720435377920000, 679630757528346624000, 50655177765863903232000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Programs

  • Maple
    spec := [S,{B=Prod(C,C),S=Prod(B,Z),C=Union(B,S,Z)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);

Formula

D-finite with recurrence: a(1)=0, a(2)=0, a(3)=6, (-4*n^4-24*n-24*n^3-44*n^2)*a(n) +(-8*n^3-42*n^2-12-58*n)*a(n+1) +(-3*n^2-8*n+3)*a(n+2) +(n+2)*a(n+3)=0, a(4)=48, a(5)=840, a(6)=17280.
a(n) ~ sqrt(58-41*sqrt(2))*(1+sqrt(2))^(n-1)*2^n*n^(n-1)*exp(-n). - Vaclav Kotesovec, Aug 18 2013
a(n)= n!*A052705(n-1). - R. J. Mathar, Oct 26 2013

A108075 Triangle in A071945 with rows reversed.

Original entry on oeis.org

1, 1, 1, 3, 3, 1, 9, 9, 5, 1, 31, 31, 19, 7, 1, 113, 113, 73, 33, 9, 1, 431, 431, 287, 143, 51, 11, 1, 1697, 1697, 1153, 609, 249, 73, 13, 1, 6847, 6847, 4719, 2591, 1151, 399, 99, 15, 1, 28161, 28161, 19617, 11073, 5201, 2001, 601, 129, 17, 1, 117631, 117631, 82623
Offset: 0

Views

Author

N. J. A. Sloane, Jun 05 2005

Keywords

Examples

			Triangle begins:
   1;
   1,  1;
   3,  3,  1;
   9,  9,  5, 1;
  31, 31, 19, 7, 1;
  ...
		

Crossrefs

Row sums yield A052705. Column 0 yields A052709.

Programs

  • Maple
    q:=sqrt(1-4*z-4*z^2): G:=(1-q)/z/(1+z)/(2-t+t*q): Gser:=simplify(series(G,z=0,13)): P[0]:=1: for n from 1 to 10 do P[n]:=coeff(Gser,z^n) od: for n from 0 to 10 do seq(coeff(t*P[n],t^k),k=1..n+1) od; # yields sequence in triangular form - Emeric Deutsch, Jun 06 2005

Formula

G.f.: (1-q)/(z(1+z)(2-t+tq)), where q = sqrt(1 - 4z - 4z^2). - Emeric Deutsch, Jun 06 2005
T(n,k) = T(n-1,k-1) + T(n-2,k-1) + T(n,k+1), T(0,0)=1. - Philippe Deléham, Nov 18 2009

Extensions

More terms from Emeric Deutsch, Jun 06 2005

A162303 Product matrix [C(k,n-k)]*A001263.

Original entry on oeis.org

1, 1, 1, 2, 4, 1, 3, 12, 8, 1, 5, 31, 39, 13, 1, 8, 73, 148, 93, 19, 1, 13, 162, 481, 486, 186, 26, 1, 21, 344, 1406, 2080, 1274, 332, 34, 1, 34, 707, 3803, 7741, 6920, 2873, 547, 43, 1
Offset: 0

Views

Author

Paul Barry, Jun 30 2009

Keywords

Comments

First column is A000045. Row sums are A052705(n+2).

Examples

			Triangle begins
1,
1, 1,
2, 4, 1,
3, 12, 8, 1,
5, 31, 39, 13, 1,
8, 73, 148, 93, 19, 1,
13, 162, 481, 486, 186, 26, 1,
21, 344, 1406, 2080, 1274, 332, 34, 1
		

Formula

Number triangle T(n,k)=sum{j=0..n, C(j,n-j)*C(j+1,k)*C(j+1,k+1)/(j+1)}.
Showing 1-9 of 9 results.