A052712
Expansion of e.g.f. (1 + 4*x - sqrt(1-8*x))/8.
Original entry on oeis.org
0, 1, 2, 24, 480, 13440, 483840, 21288960, 1107025920, 66421555200, 4516665753600, 343266597273600, 28834394170982400, 2652764263730380800, 265276426373038080000, 28649854048288112640000
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
Cf.
A052711,
A052713,
A052714,
A052715,
A052716,
A052717,
A052718,
A052719,
A052720,
A052721,
A052722,
A052723.
-
spec := [S,{B=Prod(C,C),C=Union(B,S),S=Union(B,Z)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Table[n!*2^(n-2)*CatalanNumber[n-1] +Boole[n==1]/2 +Boole[n==0]/4, {n,0,30}] (* G. C. Greubel, May 30 2022 *)
-
[2^(n-2)*factorial(n)*catalan_number(n-1) +bool(n==0)/8 +bool(n==1)/2 for n in (0..30)] # G. C. Greubel, May 30 2022
A052723
Expansion of e.g.f. (1 - x - sqrt(1-2*x+x^2-4*x^3))/(2*x).
Original entry on oeis.org
0, 0, 2, 6, 24, 240, 2880, 35280, 524160, 9434880, 188697600, 4151347200, 101548339200, 2727435110400, 79332244992000, 2488504322304000, 83879464660992000, 3021209014247424000, 115754916599562240000
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
Cf.
A052711,
A052712,
A052713,
A052714,
A052715,
A052716,
A052717,
A052718,
A052719,
A052720,
A052721,
A052722.
-
spec := [S,{B=Prod(S,S),C=Union(B,S,Z),S=Prod(Z,C)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
seq(n!*add(binomial(n-2-k,2*k)*binomial(2*k,k)/(k+1), k=0..floor((n-2)/3)), n=0..18); # Mark van Hoeij, May 12 2013
-
With[{nn=20},CoefficientList[Series[(1-x-Sqrt[1-2x+x^2-4x^3])/(2x),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jan 19 2017 *)
a[n_]:= a[n]= n!*Sum[Binomial[n-k-2,2*k]*CatalanNumber[k], {k,0,Floor[(n-2)/2]}];
Table[a[n], {n,0,30}] (* G. C. Greubel, May 28 2022 *)
-
def A052723(n): return factorial(n)*sum( binomial(n-k-2, 2*k)*catalan_number(k) for k in (0..(n-2)//2) )
[A052723(n) for n in (0..30)] # G. C. Greubel, May 28 2022
A052711
Expansion of e.g.f. x*(1 - 2*x - sqrt(1-4*x))/2.
Original entry on oeis.org
0, 0, 0, 6, 48, 600, 10080, 211680, 5322240, 155675520, 5189184000, 194075481600, 8045310873600, 366061644748800, 18134130709094400, 971471287987200000, 55956746188062720000, 3448334483839365120000
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
Cf.
A052712,
A052713,
A052714,
A052715,
A052716,
A052717,
A052718,
A052719,
A052720,
A052721,
A052722,
A052723.
-
spec := [S,{C=Union(B,Z),B=Prod(C,C),S=Prod(B,Z)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
With[{nn=20},CoefficientList[Series[x (1-2x-Sqrt[1-4x])/2,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Mar 05 2016 *)
Table[n!*CatalanNumber[n-2] +Boole[n==1] -2*Boole[n==2], {n,0,30}] (* G. C. Greubel, May 30 2022 *)
-
[factorial(n)*catalan_number(n-2) + bool(n==1)/2 - 2*bool(n==2) for n in (0..30)] # G. C. Greubel, May 30 2022
A052713
Expansion of e.g.f. (1-sqrt(1-8*x))/2.
Original entry on oeis.org
0, 2, 8, 96, 1920, 53760, 1935360, 85155840, 4428103680, 265686220800, 18066663014400, 1373066389094400, 115337576683929600, 10611057054921523200, 1061105705492152320000, 114599416193152450560000
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
Cf.
A052711,
A052712,
A052714,
A052715,
A052716,
A052717,
A052718,
A052719,
A052720,
A052721,
A052722,
A052723.
-
spec := [S,{C=Union(B,Z),B=Prod(S,S),S=Union(Z,C)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Table[n!*2^n*CatalanNumber[n-1] + Boole[n==0], {n,0,30}] (* G. C. Greubel, May 29 2022 *)
-
[2^n*factorial(n)*catalan_number(n-1) + bool(n==0)/2 for n in (0..30)] # G. C. Greubel, May 29 2022
A052717
Expansion of e.g.f. x*(1 - sqrt(1 - 4*x))/2.
Original entry on oeis.org
0, 0, 2, 6, 48, 600, 10080, 211680, 5322240, 155675520, 5189184000, 194075481600, 8045310873600, 366061644748800, 18134130709094400, 971471287987200000, 55956746188062720000, 3448334483839365120000
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
Cf.
A052711,
A052712,
A052713,
A052714,
A052715,
A052716,
A052718,
A052719,
A052720,
A052721,
A052722,
A052723.
-
[n le 1 select 0 else Factorial(n)*Catalan(n-2): n in [0..30]]; // G. C. Greubel, May 28 2022
-
spec := [S,{C=Union(B,Z),B=Prod(C,C),S=Prod(Z,C)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
with(combinat):with(combstruct):a[0]:=0:for n from 1 to 30 do a[n]:=sum((count(Permutation(n*2-2),size=n-1)),j=0..n) od: seq(a[n], n=0..22); # Zerinvary Lajos, May 03 2007
-
With[{nn=20},CoefficientList[Series[x (1-Sqrt[1-4x])/2,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Dec 20 2015 *)
Table[Boole[n==1] + n!*CatalanNumber[n-2], {n, 0, 30}] (* G. C. Greubel, May 28 2022 *)
-
combinat::catalan(n)*(n+2)! $ n = 0..15; // Zerinvary Lajos, Feb 15 2007
-
[bool(n==1)/2 + factorial(n)*catalan_number(n-2) for n in (0..30)] # G. C. Greubel, May 28 2022
A052719
Expansion of e.g.f. (1 - 2*x*sqrt(1-4*x))*(1 - sqrt(1-4*x))/4.
Original entry on oeis.org
0, 0, 0, 6, 72, 1080, 20160, 453600, 11975040, 363242880, 12454041600, 476367091200, 20113277184000, 929233405900800, 46630621823385600, 2525825348766720000, 146886458743664640000, 9127944221927731200000
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
Cf.
A052711,
A052712,
A052713,
A052714,
A052715,
A052716,
A052717,
A052718,
A052720,
A052721,
A052722,
A052723.
-
spec := [S,{B=Union(Z,C),C=Prod(B,B),S=Prod(B,C)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Table[If[n<2, 0, 3*(n-2)*(n-1)!*CatalanNumber[n-2]], {n,0,30}] (* G. C. Greubel, May 28 2022 *)
-
[0,0]+[3*(n-2)*factorial(n-1)*catalan_number(n-2) for n in (2..30)] # G. C. Greubel, May 28 2022
A052720
Expansion of e.g.f.: (1 - 4*x + 3*x^2)*(1 - 2*x - sqrt(1-4*x))/2 - x^2 + 2*x^3.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 720, 30240, 1088640, 39916800, 1556755200, 65383718400, 2964061900800, 144815595724800, 7602818775552000, 427447366714368000, 25646842002862080000, 1636734826000834560000, 110752389892723138560000
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
Cf.
A052711,
A052712,
A052713,
A052714,
A052715,
A052716,
A052717,
A052718,
A052719,
A052721,
A052722,
A052723.
-
spec := [S,{B=Union(Z,C),C=Prod(B,B),S=Prod(C,C,C)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Table[If[n<6, 0, 6*(n-2)!*Binomial[n-4, 2]*CatalanNumber[n-3]], {n,0,30}] (* G. C. Greubel, May 28 2022 *)
-
def A052720(n):
if (n<6): return 0
else: return 6*factorial(n-2)*binomial(n-4,2)*catalan_number(n-3)
[A052720(n) for n in (0..30)] # G. C. Greubel, May 28 2022
A052721
Expansion of e.g.f. x*(1-2*x)*(1 - 2*x - sqrt(1-4*x))/2 - x^3.
Original entry on oeis.org
0, 0, 0, 0, 0, 120, 2880, 70560, 1935360, 59875200, 2075673600, 79913433600, 3387499315200, 156883562035200, 7884404656128000, 427447366714368000, 24869664972472320000, 1545805113445232640000, 102232975285590589440000
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
Cf.
A052711,
A052712,
A052713,
A052714,
A052715,
A052716,
A052717,
A052718,
A052719,
A052720,
A052722,
A052723.
-
spec := [S,{C=Union(B,Z),B=Prod(C,C),S=Prod(B,B,Z)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Table[If[n<5, 0, 2*n*(n-2)!*(n-4)*CatalanNumber[n-3]], {n,0,30}] (* G. C. Greubel, May 28 2022 *)
-
def A052721(n):
if (n<5): return 0
else: return 2*n*factorial(n-2)*(n-4)*catalan_number(n-3)
[A052721(n) for n in (0..30)] # G. C. Greubel, May 28 2022
A052722
Expansion of e.g.f. (1 - 2*x - sqrt(1-4*x))^2 * (1 - sqrt(1-4*x))/8.
Original entry on oeis.org
0, 0, 0, 0, 0, 120, 3600, 100800, 3024000, 99792000, 3632428800, 145297152000, 6351561216000, 301699157760000, 15487223431680000, 854894733428736000, 50516506975334400000, 3182539939446067200000, 212985365178313728000000
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
Cf.
A052711,
A052712,
A052713,
A052714,
A052715,
A052716,
A052717,
A052718,
A052719,
A052720,
A052721,
A052723.
-
spec := [S,{C=Union(B,Z),B=Prod(C,C),S=Prod(B,B,C)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
With[{nn=20},CoefficientList[Series[((1-2x-Sqrt[1-4x])^2 (1-Sqrt[1-4x]))/8,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Aug 30 2021 *)
Table[If[n<5, 0, 10*(n-2)!*Binomial[n-3,2]*CatalanNumber[n-3]], {n,0,30}] (* G. C. Greubel, May 28 2022 *)
-
def A052722(n):
if (n<5): return 0
else: return 10*factorial(n-2)*binomial(n-3,2)*catalan_number(n-3)
[A052722(n) for n in (0..30)] # G. C. Greubel, May 28 2022
Showing 1-9 of 9 results.
Comments