A052717 Expansion of e.g.f. x*(1 - sqrt(1 - 4*x))/2.
0, 0, 2, 6, 48, 600, 10080, 211680, 5322240, 155675520, 5189184000, 194075481600, 8045310873600, 366061644748800, 18134130709094400, 971471287987200000, 55956746188062720000, 3448334483839365120000
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..350
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 673
Crossrefs
Programs
-
Magma
[n le 1 select 0 else Factorial(n)*Catalan(n-2): n in [0..30]]; // G. C. Greubel, May 28 2022
-
Maple
spec := [S,{C=Union(B,Z),B=Prod(C,C),S=Prod(Z,C)},labeled]: seq(combstruct[count](spec,size=n), n=0..20); with(combinat):with(combstruct):a[0]:=0:for n from 1 to 30 do a[n]:=sum((count(Permutation(n*2-2),size=n-1)),j=0..n) od: seq(a[n], n=0..22); # Zerinvary Lajos, May 03 2007
-
Mathematica
With[{nn=20},CoefficientList[Series[x (1-Sqrt[1-4x])/2,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Dec 20 2015 *) Table[Boole[n==1] + n!*CatalanNumber[n-2], {n, 0, 30}] (* G. C. Greubel, May 28 2022 *)
-
MuPAD
combinat::catalan(n)*(n+2)! $ n = 0..15; // Zerinvary Lajos, Feb 15 2007
-
SageMath
[bool(n==1)/2 + factorial(n)*catalan_number(n-2) for n in (0..30)] # G. C. Greubel, May 28 2022
Formula
Recurrence: a(1)=0, a(3)=6, a(2)=2, n*a(n+1) = (4*n^2 - 2*n - 6)*a(n).
G.f.: x*(d/dx)(x^2 * Hypergeometric2F0([1, 1/2], [], 4*x)). - G. C. Greubel, May 28 2022