cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A052766 Expansion of e.g.f.: (log(1-x))^2*x^3.

Original entry on oeis.org

0, 0, 0, 0, 0, 120, 720, 4620, 33600, 276192, 2540160, 25874640, 289301760, 3523208832, 46425899520, 658169366400, 9988896153600, 161590513766400, 2775695618949120, 50455787382604800, 967644983144448000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Previous name was: A simple grammar.

Crossrefs

Programs

  • Maple
    spec := [S,{B=Cycle(Z),S=Prod(Z,Z,Z,B,B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    CoefficientList[Series[(Log[1-x])^2*x^3, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 30 2013 *)
    Join[{0,0,0,0,0}, RecurrenceTable[{a[5] == 120, a[6] == 720, (n^4 -7*n^2 -3*n^3 +15*n +18)*a[n] + (8*n -2*n^3 +5*n^2 -20)*a[n+1] == -(-3*n +n^2 + 2)*a[n+2]}, a, {n, 5, 30}]] (* G. C. Greubel, Sep 05 2018 *)
  • PARI
    x='x+O('x^30); concat(vector(5), Vec(serlaplace(log(-1/(-1+x))^2*x^3))) \\ G. C. Greubel, Sep 05 2018
    
  • PARI
    a(n)={if(n>=3, 2*n*(n-1)*(n-2)*abs(stirling(n-3,2,1)), 0)} \\ Andrew Howroyd, Aug 08 2020

Formula

E.g.f.: log(-1/(-1+x))^2*x^3.
Recurrence: a(1)=0, a(2)=0, a(4)=0, a(3)=0, a(5)=120, (n^4-7*n^2-3*n^3+15*n+18)*a(n) + (8*n-2*n^3+5*n^2-20)*a(n+1) + (-3*n+n^2+2)*a(n+2) = 0.
a(n) ~ 2*(n-1)! * (log(n) + gamma), where gamma is Euler-Mascheroni constant (A001620). - Vaclav Kotesovec, Sep 30 2013
a(n) = n*A052754(n-1) = 2*n*(n-1)*(n-2)*abs(Stirling1(n-3,2)) for n >= 3. - Andrew Howroyd, Aug 08 2020

Extensions

New name, using e.g.f., by Vaclav Kotesovec, Sep 30 2013

A052765 Expansion of e.g.f.: -x^2*(log(1-x))^3.

Original entry on oeis.org

0, 0, 0, 0, 0, 120, 1080, 8820, 75600, 701568, 7091280, 77961840, 928778400, 11937347136, 164802429792, 2433765035520, 38299272560640, 639999894048768, 11320441140625920, 211340086405770240, 4153253573744179200, 85710868976433254400, 1853386172505676892160
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Previous name was: A simple grammar.

Crossrefs

Programs

  • Maple
    spec := [S,{B=Cycle(Z),S=Prod(Z,Z,B,B,B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    CoefficientList[Series[-x^2*(Log[1-x])^3, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 01 2013 *)
  • PARI
    x='x+O('x^30); concat(vector(5), Vec(serlaplace(x^2*log(-1/(-1+x))^3))) \\ G. C. Greubel, Sep 05 2018
    
  • PARI
    a(n)={if(n>=2, 3!*n*(n-1)*abs(stirling(n-2,3,1)), 0)} \\ Andrew Howroyd, Aug 08 2020

Formula

E.g.f.: x^2*log(-1/(-1+x))^3.
Recurrence: a(1)=0, a(2)=0, a(3)=0, a(4)=0, a(5)=120, (16*n-48*n^2-4*n^3-n^6+13*n^4+48)*a(n) + (n^2+61*n-26*n^3+3*n^4+3*n^5-42)*a(n+1) + (-9*n+15*n^2-3*n^3-3*n^4)*a(n+2) + (n^3-n)*a(n+3) = 0.
a(n) ~ (n-1)! * (3*log(n)^2 + 6*gamma*log(n) - Pi^2/2 + 3*gamma^2), where gamma is Euler-Mascheroni constant (A001620). - Vaclav Kotesovec, Oct 01 2013
a(n) = n*A052758(n-1) = 3!*n*(n-1)*abs(Stirling1(n-2,3)) for n >= 2. - Andrew Howroyd, Aug 08 2020

Extensions

New name using e.g.f., Vaclav Kotesovec, Oct 01 2013

A052790 Expansion of e.g.f.: x^2*log(1-x)^4.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 720, 10080, 114240, 1270080, 14621040, 177629760, 2292618240, 31485168000, 459767275968, 7126635035520, 117007217832960, 2030137891891200, 37138576448883456, 714734162773420032, 14439823458634690560, 305638240397811793920, 6764967047810572812288
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Original name: a simple grammar.

Crossrefs

Programs

  • Maple
    spec := [S,{B=Cycle(Z),S=Prod(Z,Z,B,B,B,B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    With[{nn=20},CoefficientList[Series[x^2 Log[-1/(x-1)]^4,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, May 28 2016 *)
  • PARI
    a(n)={if(n>=2, 4!*n*(n-1)*abs(stirling(n-2,4,1)), 0)} \\ Andrew Howroyd, Aug 08 2020

Formula

E.g.f.: x^2*log(-1/(-1+x))^4.
Recurrence: {a(1)=0, a(2)=0, a(4)=0, a(3)=0, a(5)=0, a(6)=720, (32*n-464*n^2-21*n^6-22*n^5+48*n^3+n^8+2*n^7+384+160*n^4)*a(n) + (105*n^4-360-14*n^6-121*n^2-4*n^7+642*n-296*n^3+48*n^5)*a(n+1) + (-84*n+24*n^5+179*n^2+6*n^6-35*n^4-90*n^3)*a(n+2) + (14*n^2+12*n^3-8*n-14*n^4-4*n^5)*a(n+3) + (-n^2+n^4-2*n+2*n^3)*a(n+4)}.
a(n) = n*A052770(n-1) = 4!*n*(n-1)*abs(Stirling1(n-2,4)) for n >= 2. - Andrew Howroyd, Aug 08 2020

Extensions

Name changed and terms a(20) and beyond from Andrew Howroyd, Aug 08 2020
Showing 1-3 of 3 results.