cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A349415 Number of ways an n-set can be written as the union of 2 sets each with 4 or more elements and whose intersection contains exactly 3 elements.

Original entry on oeis.org

10, 60, 245, 840, 2604, 7560, 20955, 56100, 146146, 372372, 931385, 2293200, 5569880, 13368528, 31751223, 74709900, 174324430, 403700220, 928512277, 2122315800, 4823447300, 10905187800, 24536675475, 54962156340, 122607890874, 272461983780, 603308682865, 1331439856800
Offset: 5

Views

Author

Enrique Navarrete, Nov 16 2021

Keywords

Comments

Starting at n=7, the terms in the sequence alternate one odd and 3 even.

Examples

			a(5)=10 since [5] can be written as the union of the following sets: {1,2,3,4} U {1,2,3,5}, {1,2,3,4} U {1,2,4,5}, {1,2,3,4} U {1,3,4,5}, {1,2,3,4} U {2,3,4,5}, {1,2,3,5} U {1,2,4,5}, {1,2,3,5} U {1,3,4,5},{1,2,3,5} U {2,3,4,5}, {1,2,4,5} U {1,3,4,5}, {1,2,4,5} U {2,3,4,5}, {1,3,4,5} U {2,3,4,5}.
		

Crossrefs

Programs

  • Maple
    a:= n-> binomial(n,3)*Stirling2(n-3,2):
    seq(a(n), n=5..32);  # Alois P. Heinz, Nov 16 2021
  • Mathematica
    nterms=50;Table[Binomial[n,3]*StirlingS2[n-3,2],{n,5,nterms+4}] (* Paolo Xausa, Nov 20 2021 *)

Formula

a(n) = Sum_{j=4..n/2+1} binomial(n,j)*binomial(j,3), n even.
a(n) = (Sum_{j=4..ceiling(n/2)} binomial(n,j)*binomial(j,3)) + (1/2)*binomial(n,ceiling(n/2)+1)*binomial(ceiling(n/2)+1,3), n odd.
From Alois P. Heinz, Nov 16 2021: (Start)
a(n) = binomial(n,3) * Stirling2(n-3,2).
G.f.: x^5*(8*x^6 - 48*x^5 + 124*x^4 - 180*x^3 + 145*x^2 - 60*x + 10)/((2*x-1)^4*(x-1)^4). (End)
E.g.f.: (1/12)*x^3*(exp(x)-1)^2.
a(n) = 12*a(n-1) - 62*a(n-2) + 180*a(n-3) - 321*a(n-4) + 360*a(n-5) - 248*a(n-6) + 96*a(n-7) - 16*a(n-8). - Wesley Ivan Hurt, Dec 03 2021
Showing 1-1 of 1 results.