A052775 G.f. A(x) satisfies: A(x) = exp( Sum_{k>=1} (-1)^(k+1) * A(x^k)^4 * x^k / k ).
1, 1, 4, 26, 184, 1443, 11888, 101859, 897529, 8085103, 74113656, 689134849, 6484074328, 61620879930, 590628242876, 5703027934533, 55423681958153, 541689157201498, 5320989368024126, 52503593913927276
Offset: 0
Links
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 732
Programs
-
Maple
spec := [S,{B=Prod(Z,S,S,S,S),S=PowerSet(B)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
Formula
G.f. A(x) satisfies: A(x) = exp( Sum_{k>=1} (-1)^(k+1) * A(x^k)^4 * x^k / k ). - Ilya Gutkovskiy, May 26 2023
Extensions
New name from Ilya Gutkovskiy, May 26 2023
Comments