cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A052755 G.f. A(x) satisfies: A(x) = exp( Sum_{k>=1} (-1)^(k+1) * A(x^k)^3 * x^k / k ).

Original entry on oeis.org

1, 1, 3, 15, 79, 466, 2872, 18409, 121197, 815491, 5581214, 38737651, 272012178, 1928939678, 13794498614, 99371002295, 720411445866, 5252194141946, 38482834469488, 283223825607253, 2092829973445703
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Old name was: A simple grammar.

Crossrefs

Programs

  • Maple
    spec := [S,{S=PowerSet(B),B=Prod(S,S,S,Z)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);

Formula

G.f. A(x) satisfies: A(x) = exp( Sum_{k>=1} (-1)^(k+1) * A(x^k)^3 * x^k / k ). - Ilya Gutkovskiy, May 26 2023

Extensions

New name from Ilya Gutkovskiy, May 26 2023

A052798 G.f. A(x) satisfies: A(x) = exp( Sum_{k>=1} (-1)^(k+1) * A(x^k)^5 * x^k / k ).

Original entry on oeis.org

1, 1, 5, 40, 355, 3475, 35836, 384436, 4243860, 47905385, 550404336, 6415528666, 75677788275, 901728156490, 10837196405920, 131215506276862, 1599078373019073, 19598996116313001, 241433496694878595
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Old name was: A simple grammar.

Crossrefs

Programs

  • Maple
    spec := [S,{S=PowerSet(B),B=Prod(Z,S,S,S,S,S)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);

Formula

G.f. A(x) satisfies: A(x) = exp( Sum_{k>=1} (-1)^(k+1) * A(x^k)^5 * x^k / k ). - Ilya Gutkovskiy, May 26 2023

Extensions

New name from Ilya Gutkovskiy, May 26 2023

A363468 G.f. A(x) satisfies: A(x) = x + x^2 * exp( Sum_{k>=1} (-1)^(k+1) * A(x^k)^4 / (k*x^(3*k)) ).

Original entry on oeis.org

1, 1, 1, 4, 14, 48, 201, 812, 3455, 14961, 65954, 294884, 1334526, 6098879, 28114885, 130561444, 610244889, 2868547475, 13552299256, 64316483918, 306473091394, 1465727378317, 7033293786125, 33851816310445, 163384902125185, 790589562321385, 3834540111072545, 18638976010097900
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 03 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 28; A[] = 0; Do[A[x] = x + x^2 Exp[Sum[(-1)^(k + 1) A[x^k]^4/(k x^(3 k)), {k, 1, nmax}]] + O[x]^(nmax + 1)//Normal, nmax + 1]; CoefficientList[A[x], x] // Rest
    a[1] = a[2] = 1; f[n_] := f[n] = Sum[a[k] a[n - k], {k, 1, n - 1}]; g[n_] := g[n] = Sum[f[k] f[n - k], {k, 1, n - 1}]; a[n_] := a[n] = (1/(n - 2)) Sum[Sum[(-1)^(k/d + 1)d g[d + 3], {d, Divisors[k]}] a[n - k], {k, 1, n - 2}]; Table[a[n], {n, 1, 28}]
Showing 1-3 of 3 results.