A052755 G.f. A(x) satisfies: A(x) = exp( Sum_{k>=1} (-1)^(k+1) * A(x^k)^3 * x^k / k ).
1, 1, 3, 15, 79, 466, 2872, 18409, 121197, 815491, 5581214, 38737651, 272012178, 1928939678, 13794498614, 99371002295, 720411445866, 5252194141946, 38482834469488, 283223825607253, 2092829973445703
Offset: 0
Links
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 711
Programs
-
Maple
spec := [S,{S=PowerSet(B),B=Prod(S,S,S,Z)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
Formula
G.f. A(x) satisfies: A(x) = exp( Sum_{k>=1} (-1)^(k+1) * A(x^k)^3 * x^k / k ). - Ilya Gutkovskiy, May 26 2023
Extensions
New name from Ilya Gutkovskiy, May 26 2023
Comments