cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052780 Expansion of e.g.f. x^2*exp(4*x).

Original entry on oeis.org

0, 0, 2, 24, 192, 1280, 7680, 43008, 229376, 1179648, 5898240, 28835840, 138412032, 654311424, 3053453312, 14092861440, 64424509440, 292057776128, 1314259992576, 5875515260928, 26113401159680
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Old name was: A simple grammar.

Crossrefs

Cf. A038845.

Programs

  • GAP
    List([0..30], n-> 4^(n-2)*n*(n-1)); # G. C. Greubel, Jul 20 2019
  • Magma
    [4^(n-2)*n*(n-1): n in [0..30]]; // G. C. Greubel, Jul 20 2019
    
  • Maple
    spec := [S,{B=Set(Z),S=Prod(Z,Z,B,B,B,B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
    seq(n*(n-1)*4^(n-2), n=0..20); # Zerinvary Lajos, Apr 25 2007
  • Mathematica
    Table[4^(n-2)*n*(n-1), {n,0,30}] (* G. C. Greubel, Jul 20 2019 *)
    With[{nn=20},CoefficientList[Series[x^2 Exp[4x],{x,0,nn}],x] Range[0,nn]!] (* or *) LinearRecurrence[{12,-48,64},{0,0,2},30] (* Harvey P. Dale, Sep 28 2022 *)
  • PARI
    vector(30, n, n--; 4^(n-2)*n*(n-1)) \\ G. C. Greubel, Jul 20 2019
    
  • Sage
    [4^(n-2)*n*(n-1) for n in (0..30)] # G. C. Greubel, Jul 20 2019
    

Formula

E.g.f.: x^2*exp(x)^4.
a(n) = 2*A038845(n-2).
Recurrence: a(1)=0, a(2)=2, (n-1)*a(n+1) - 4*(n+1)*a(n) = 0.
From Ralf Stephan, Mar 26 2003: (Start)
a(n) = n*(n-1)*4^(n-2).
G.f.: 2*x^2/(1-4*x)^3. (End)

Extensions

New name from e.g.f. by Jon E. Schoenfield, Feb 07 2019