A052798 G.f. A(x) satisfies: A(x) = exp( Sum_{k>=1} (-1)^(k+1) * A(x^k)^5 * x^k / k ).
1, 1, 5, 40, 355, 3475, 35836, 384436, 4243860, 47905385, 550404336, 6415528666, 75677788275, 901728156490, 10837196405920, 131215506276862, 1599078373019073, 19598996116313001, 241433496694878595
Offset: 0
Links
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 755
Programs
-
Maple
spec := [S,{S=PowerSet(B),B=Prod(Z,S,S,S,S,S)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
Formula
G.f. A(x) satisfies: A(x) = exp( Sum_{k>=1} (-1)^(k+1) * A(x^k)^5 * x^k / k ). - Ilya Gutkovskiy, May 26 2023
Extensions
New name from Ilya Gutkovskiy, May 26 2023
Comments