cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052804 A simple grammar: cycles of rooted cycles.

Original entry on oeis.org

0, 0, 2, 3, 20, 90, 714, 5460, 54704, 580608, 7214040, 96932880, 1452396912, 23507621280, 414102201408, 7827185489760, 158757800613120, 3429996441661440, 78775916315263488, 1914627403408320000, 49126748261368331520, 1326584986873331189760
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Crossrefs

Programs

  • Maple
    spec := [S,{B=Prod(C,Z),C=Cycle(Z),S=Cycle(B)},labeled]: seq(combstruct[count](spec, size=n), n=0..20);
  • Mathematica
    nn = 25; Range[0, nn]! CoefficientList[Series[Log[-1/(-1 + Log[-1/(-1 + x)]*x)], {x, 0, nn}], x] (* T. D. Noe, Feb 21 2013 *)
  • PARI
    N = 66;  x = 'x + O('x^N);
    egf = -log(1 + x*log(1-x)) + 'c0;
    gf = serlaplace(egf);
    v = Vec(gf);  v[1]-='c0;  v
    /* Joerg Arndt, Feb 21 2013 */

Formula

E.g.f.: log(-1/(-1+log(-1/(-1+x))*x)).
E.g.f.: -log(1 + x*log(1-x)). - Arkadiusz Wesolowski, Feb 21 2013
a(n) ~ (n-1)! * r^n, where r = 1.349976485401125... is the root of the equation (r-1)*exp(r) = r. - Vaclav Kotesovec, Oct 01 2013
a(n) = n! * Sum_{k=1..floor(n/2)} (k-1)! * |Stirling1(n-k,k)|/(n-k)!. - Seiichi Manyama, Dec 13 2023
a(0) = a(1) = 0; a(n) = n * (n-2)! + Sum_{k=2..n-1} k * (k-2)! * binomial(n-1,k) * a(n-k). - Seiichi Manyama, Jan 21 2025