A052820 Expansion of e.g.f. 1/(1 - x + log(1 - x)).
1, 2, 9, 62, 572, 6604, 91526, 1480044, 27353448, 568731648, 13138994112, 333895239072, 9256507508112, 278000959058016, 8991458660924112, 311585506208924064, 11517363473843526912, 452332548042633835776
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..395
- W. S. Gray and M. Thitsa, System Interconnections and Combinatorial Integer Sequences, in: System Theory (SSST), 2013 45th Southeastern Symposium on, Date of Conference: 11-11 Mar 2013.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 785
- Makhin Thitsa and W. Steven Gray, On the Radius of Convergence of Cascaded Analytic Nonlinear Systems, 2011 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), Orlando, FL, USA, December 12-15, 2011, pp. 3830-3835.
- M. Thitsa and W. S. Gray, On the radius of convergence of cascaded analytic nonlinear systems: The SISO case, System Theory (SSST), 2011 IEEE 43rd Southeastern Symposium on, 14-16 March 2011, pp. 30-36.
- Makhin Thitsa and W. Steven Gray, On the Radius of Convergence of Interconnected Analytic Nonlinear Input-Output Systems, SIAM Journal on Control and Optimization, Vol. 50, No. 5, 2012, pp. 2786-2813. - From _N. J. A. Sloane_, Dec 26 2012
Programs
-
Maple
spec := [S,{C=Cycle(Z),B=Union(C,Z),S=Sequence(B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Mathematica
CoefficientList[Series[1/(1-x+Log[1-x]), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 01 2013 *)
Formula
E.g.f.: -1/(-1+x+log(-1/(-1+x))).
a(n) ~ n! * (1/(1-LambertW(1)))^n/(1/LambertW(1)-LambertW(1)). - Vaclav Kotesovec, Oct 01 2013
a(0) = 1; a(n) = n * a(n-1) + Sum_{k=0..n-1} binomial(n,k) * (n-k-1)! * a(k). - Ilya Gutkovskiy, Apr 26 2021
Extensions
New name using e.g.f., Vaclav Kotesovec, Oct 01 2013
Comments