cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A052870 First differences of A052829.

Original entry on oeis.org

1, 1, 2, 6, 15, 44, 128, 386, 1179, 3679, 11601, 37030, 119262, 387325, 1266647, 4168264, 13791565, 45856091, 153134306, 513403575, 1727395042, 5830866601, 19740613869, 67014421326, 228066659185, 777961702283, 2659398743509, 9109015516017, 31258117755635
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Old name was: A simple grammar.

Crossrefs

Programs

  • Maple
    spec := [S,{C=Sequence(Z,1 <= card),S=PowerSet(B),B=Prod(C,S)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);

Formula

From Seiichi Manyama, Jun 07 2023: (Start)
Conjectures: G.f. satisfies A(x) = exp( Sum_{k>=1} (-1)^(k+1) * A(x^k) * x^k/(k * (1 - x^k)) ).
A(x) = Sum_{k>=0} a(k) * x^k = Product_{j>=1} Product_{k>=0} (1+x^(j+k))^a(k). (End)

Extensions

More terms from Alois P. Heinz, Mar 16 2016

A308227 G.f.: (x/(1 - x)) * Product_{k>=1} ((1 + x^k)/(1 - x^k))^a(k).

Original entry on oeis.org

1, 3, 11, 47, 217, 1065, 5453, 28789, 155633, 857207, 4793103, 27136555, 155249971, 896133487, 5212477023, 30522169103, 179777122393, 1064411910393, 6331361864657, 37817265028841, 226731778956181, 1363993567341257, 8231111557650837, 49812263080757845
Offset: 1

Views

Author

Ilya Gutkovskiy, May 16 2019

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = SeriesCoefficient[x/(1 - x) Product[((1 + x^k)/(1 - x^k))^a[k], {k, 1, n - 1}], {x, 0, n}]; Table[a[n], {n, 1, 24}]
    terms = 24; A[] = 0; Do[A[x] = x Exp[Sum[2 A[x^(2 k - 1)]/(2 k - 1) + x^k/k, {k, 1, terms}]] + O[x]^(terms + 1) // Normal, terms + 1]; CoefficientList[A[x], x] // Rest

Formula

G.f. A(x) satisfies: A(x) = x * exp(Sum_{k>=1} 2*A(x^(2*k-1))/(2*k - 1) + x^k/k).
Showing 1-2 of 2 results.