cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052844 E.g.f.: exp(x*(2-x)/(1-x)).

Original entry on oeis.org

1, 2, 6, 26, 148, 1032, 8464, 79592, 842832, 9914336, 128162464, 1804852128, 27489582784, 450089665664, 7880963503872, 146913179393408, 2904309329449216, 60677563647195648, 1335634021282590208, 30891084696208976384, 748854186528315687936
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

An unspecified number of sign-in sheets are available at a meeting of n people. The attendees sign in on one of the sheets in the order that they arrive at the meeting. But some, none, or all of the attendees forget to sign in. a(n) is the number of ways this can happen.
Previous name was: A simple grammar.

Crossrefs

Row sums of A129652.
Cf. A000262.

Programs

  • Maple
    spec := [S,{B=Sequence(Z,1 <= card),C=Union(Z,B),S=Set(C)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    CoefficientList[Series[Exp[x/(1 - x)] Exp[x], {x, 0, 20}], x]*
    Table[n!, {n, 0, 20}]
  • Maxima
    a(n):=n!*sum(((sum(binomial(m,j)*binomial(n-j-1,m-j-1),j,0,m)))/m!,m,1,n)+1; /* Vladimir Kruchinin, May 02 2012 */

Formula

E.g.f.: exp(x*(-2+x)/(-1+x)).
Recurrence: {a(0)=1, a(1)=2, a(2)=6, (-2-n^2-3*n)*a(n)+(n^2+5*n+6)*a(n+1)+(-2*n-6)*a(n+2)+a(n+3)}.
a(n) = n!*sum(m=1,n, ((sum(j=0,m, binomial(m,j)*binomial(n-j-1,m-j-1))))/m!)+1; [Vladimir Kruchinin, May 02 2012]
E.g.f. = exp(x)*exp(x/(1-x)) so a(n) = Sum_{k = 0..n} binomial(n,k)*A000262(k). - Peter Bala May 14 2012
a(n) ~ exp(2*sqrt(n)-n+1/2)*n^(n-1/4)/sqrt(2). - Vaclav Kotesovec, Oct 09 2012
a(0) = 1; a(n) = a(n-1) + Sum_{k=1..n} binomial(n-1,k-1) * k! * a(n-k). - Ilya Gutkovskiy, Aug 13 2021

Extensions

New name using e.g.f. from Ilya Gutkovskiy, Aug 13 2021