A052844 E.g.f.: exp(x*(2-x)/(1-x)).
1, 2, 6, 26, 148, 1032, 8464, 79592, 842832, 9914336, 128162464, 1804852128, 27489582784, 450089665664, 7880963503872, 146913179393408, 2904309329449216, 60677563647195648, 1335634021282590208, 30891084696208976384, 748854186528315687936
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- T.-X. He, A symbolic operator approach to power series transformation-expansion formulas, JIS 11 (2008) 08.2.7.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 812
Programs
-
Maple
spec := [S,{B=Sequence(Z,1 <= card),C=Union(Z,B),S=Set(C)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Mathematica
CoefficientList[Series[Exp[x/(1 - x)] Exp[x], {x, 0, 20}], x]* Table[n!, {n, 0, 20}]
-
Maxima
a(n):=n!*sum(((sum(binomial(m,j)*binomial(n-j-1,m-j-1),j,0,m)))/m!,m,1,n)+1; /* Vladimir Kruchinin, May 02 2012 */
Formula
E.g.f.: exp(x*(-2+x)/(-1+x)).
Recurrence: {a(0)=1, a(1)=2, a(2)=6, (-2-n^2-3*n)*a(n)+(n^2+5*n+6)*a(n+1)+(-2*n-6)*a(n+2)+a(n+3)}.
a(n) = n!*sum(m=1,n, ((sum(j=0,m, binomial(m,j)*binomial(n-j-1,m-j-1))))/m!)+1; [Vladimir Kruchinin, May 02 2012]
E.g.f. = exp(x)*exp(x/(1-x)) so a(n) = Sum_{k = 0..n} binomial(n,k)*A000262(k). - Peter Bala May 14 2012
a(n) ~ exp(2*sqrt(n)-n+1/2)*n^(n-1/4)/sqrt(2). - Vaclav Kotesovec, Oct 09 2012
a(0) = 1; a(n) = a(n-1) + Sum_{k=1..n} binomial(n-1,k-1) * k! * a(n-k). - Ilya Gutkovskiy, Aug 13 2021
Extensions
New name using e.g.f. from Ilya Gutkovskiy, Aug 13 2021
Comments