A052855 Number of forests of rooted trees of nonempty sets with n points. (Each node is a set of 1 or more points.)
1, 1, 3, 8, 24, 71, 224, 710, 2318, 7659, 25703, 87153, 298574, 1031104, 3587263, 12558652, 44214807, 156438309, 555973965, 1983817178, 7104313970, 25525304569, 91986529421, 332408847422, 1204259931815, 4373027942634, 15914143511582, 58030451159889
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1717
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 823
Programs
-
Maple
spec := [S,{B=Sequence(Z,1 <= card),S=Set(C),C=Prod(B,S)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Mathematica
max = 26; A[] = 1; Do[A[x] = Exp[Sum[A[x^k]/(1 - x^k)*x^k/k + O[x]^n, {k, 1, n}]] // Normal, {n, 1, max}]; CoefficientList[A[x] + O[x]^max, x] (* Jean-François Alcover, May 25 2018 *)
-
PARI
{a(n)=my(A=1+x);for(i=1,n,A=exp(sum(m=1,n,subst(A/(1-x),x,x^m+x*O(x^n))*x^m/m)));polcoeff(A,n)} /* Paul D. Hanna, Oct 26 2011 */
Formula
G.f. satisfies A(x) = exp( Sum_{n>=1} A(x^n)/(1-x^n) * x^n/n ). - Paul D. Hanna, Oct 26 2011
G.f.: A(x) = Sum_{k>=0} a(k) * x^k = 1/Product_{j>=1} Product_{k>=0} (1-x^(j+k))^a(k). - Seiichi Manyama, Jun 07 2023
Extensions
More terms from Franklin T. Adams-Watters, Feb 08 2006
Comments