cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052855 Number of forests of rooted trees of nonempty sets with n points. (Each node is a set of 1 or more points.)

Original entry on oeis.org

1, 1, 3, 8, 24, 71, 224, 710, 2318, 7659, 25703, 87153, 298574, 1031104, 3587263, 12558652, 44214807, 156438309, 555973965, 1983817178, 7104313970, 25525304569, 91986529421, 332408847422, 1204259931815, 4373027942634, 15914143511582, 58030451159889
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Euler transform of A036249 (as well as first differences thereof). - Franklin T. Adams-Watters, Feb 08 2006

Crossrefs

First differences of A036249 and A029856.

Programs

  • Maple
    spec := [S,{B=Sequence(Z,1 <= card),S=Set(C),C=Prod(B,S)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    max = 26; A[] = 1; Do[A[x] = Exp[Sum[A[x^k]/(1 - x^k)*x^k/k + O[x]^n, {k, 1, n}]] // Normal, {n, 1, max}]; CoefficientList[A[x] + O[x]^max, x] (* Jean-François Alcover, May 25 2018 *)
  • PARI
    {a(n)=my(A=1+x);for(i=1,n,A=exp(sum(m=1,n,subst(A/(1-x),x,x^m+x*O(x^n))*x^m/m)));polcoeff(A,n)} /* Paul D. Hanna, Oct 26 2011 */

Formula

G.f. satisfies A(x) = exp( Sum_{n>=1} A(x^n)/(1-x^n) * x^n/n ). - Paul D. Hanna, Oct 26 2011
G.f.: A(x) = Sum_{k>=0} a(k) * x^k = 1/Product_{j>=1} Product_{k>=0} (1-x^(j+k))^a(k). - Seiichi Manyama, Jun 07 2023

Extensions

More terms from Franklin T. Adams-Watters, Feb 08 2006