A052860 A simple grammar: rooted sequences of cycles.
0, 1, 2, 9, 56, 440, 4164, 46046, 582336, 8288136, 131090880, 2280970032, 43298796672, 890441326320, 19720847692896, 467964024901200, 11844861486802944, 318549937907204352, 9070876711252816128, 272648086802525651328, 8626452694650322744320
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..150
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 828
Crossrefs
Cf. A007840.
Programs
-
Maple
spec := [S,{C=Cycle(Z),B=Sequence(C),S=Prod(Z,B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
Mathematica
nn=20;a=Log[1/(1-x)];Range[0,nn]!CoefficientList[Series[x/(1-a) ,{x,0,nn}],x] (* Geoffrey Critzer, Nov 06 2012 *)
-
PARI
a(n)=n!*polcoeff(x/(1+log(1-x +x*O(x^n))),n) \\ Paul D. Hanna, Jul 19 2006
Formula
E.g.f.: -1/(-1+log(-1/(-1+x)))*x.
a(n) = n*A007840(n-1). a(n) = n!*Sum_{k=0..n-1} a(k)/k!/(n-k) for n>=1 with a(0)=0. - Paul D. Hanna, Jul 19 2006
a(n) ~ n! * exp(n-1) / (exp(1)-1)^n. - Vaclav Kotesovec, Mar 16 2014
Comments