cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A007840 Number of factorizations of permutations of n letters into ordered cycles.

Original entry on oeis.org

1, 1, 3, 14, 88, 694, 6578, 72792, 920904, 13109088, 207360912, 3608233056, 68495486640, 1408631978064, 31197601660080, 740303842925184, 18738231641600256, 503937595069600896, 14349899305396086912, 431322634732516137216, 13646841876634025159424
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of ways to seat n people at an unspecified number of circular tables and then linearly order the nonempty tables. - Geoffrey Critzer, Mar 18 2009
The terms of this sequence for n >= 1 are the row sums of A008275^2, the unsigned version of A039814. - Peter Bala, Jul 22 2014
Signed sequence is the base for an Appell sequence of polynomials with the e.g.f. e^(x*t)/[log(1+t) + 1] = exp(P(.,x),t) that is the umbral compositional inverse for A238385, reverse of A111492, i.e., umbrally evaluated UP(n,P(.,t))= x^n = P(n,UP(.,t)) where UP(n,t) are the polynomials of A238385. Umbrally evaluated means letting (A(.,t))^n = A(n,t) after substituting A for the independent variable of the polynomial. - Tom Copeland, Nov 15 2014
a(n) is the number of unimodal rooted forests on n labeled nodes (i.e., those forests that avoid the patterns 213 and 312). - Kassie Archer, Aug 30 2018
Number of permutations of [n] where fixed points at index j are j-colored and all other points are unicolored. - Alois P. Heinz, Apr 24 2020

Crossrefs

Cf. A052860. Row sums of unsigned version of A039814.

Programs

  • Maple
    a:= proc(n) a(n):= n!*`if`(n=0, 1, add(a(k)/(k!*(n-k)), k=0..n-1)) end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Nov 06 2012
  • Mathematica
    Table[Sum[Abs[StirlingS1[n, k]] k!, {k, 0, n}], {n, 0, 20}] (* Geoffrey Critzer, Mar 18 2009 *)
  • PARI
    a(n)=n!*polcoeff(1/(1+log(1-x +x*O(x^n))),n) /* Paul D. Hanna, Jul 19 2006 */
    
  • PARI
    {a(n)=local(CF=1+x*O(x)); for(k=0, n-1, CF=1/((n-k)-((n-k+1)\2)^2*x*CF)); n!*polcoeff(1/(1-x*CF), n)} /* Paul D. Hanna, Jul 19 2006 */
    
  • Sage
    def A007840_list(len):
        f, R, C = 1, [1], [1]+[0]*len
        for n in (1..len):
            f *= n
            for k in range(n, 0, -1):
                C[k] = -C[k-1]*((k-1)/k if k>1 else 1)
            C[0] = sum((-1)^k*C[k] for k in (1..n))
            R.append(C[0]*f)
        return R
    print(A007840_list(20)) # Peter Luschny, Feb 21 2016

Formula

a(n) = Sum_{k=1..n} k! * s(n, k), s(n, k) = unsigned Stirling number of first kind; E.g.f. 1/(1+log(1-z)).
For n>0, a(n) is the permanent of the n X n matrix with entries a(i, i) = i and a(i, j) = 1 elsewhere. - Philippe Deléham, Dec 09 2003
a(n) = A052860(n)/n for n >= 1.
a(n) = n!*Sum_{k=0..n-1} a(k)/k!/(n-k) for n >= 1 with a(0)=1. - Paul D. Hanna, Jul 19 2006
E.g.f.: B(A(x)) where B(x) = 1/(1-x) and A(x) = log(1/(1-x)). - Geoffrey Critzer, Mar 18 2009
a(n) = D^n(1/(1-x)) evaluated at x = 0, where D is the operator exp(x)*d/dx. Cf. A006252. - Peter Bala, Nov 25 2011
E.g.f.: 1/(1+log(1-x)) = 1/(1 - x/(1 - x/(2 - x/(3 - 4*x/(4 - 4*x/(5 - 9*x/(6 - 9*x/(7 - 16*x/(8 - 16*x/(9 - ...)))))))))), a continued fraction. - Paul D. Hanna, Dec 31 2011
a(n) ~ n! * exp(n)/(exp(1)-1)^(n+1). - Vaclav Kotesovec, Jun 21 2013

Extensions

Extended June 1995

A291978 Triangle read by rows, T(n, k) = (-1)^(n-k)*n!*[t^k]([x^n] exp(x*t)/(1 + log(1+x))) for 0<=k<=n.

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 14, 9, 3, 1, 88, 56, 18, 4, 1, 694, 440, 140, 30, 5, 1, 6578, 4164, 1320, 280, 45, 6, 1, 72792, 46046, 14574, 3080, 490, 63, 7, 1, 920904, 582336, 184184, 38864, 6160, 784, 84, 8, 1, 13109088, 8288136, 2620512, 552552, 87444, 11088, 1176, 108, 9, 1
Offset: 0

Views

Author

Peter Luschny, Sep 15 2017

Keywords

Examples

			Triangle starts:
[1]
[1,           1]
[3,           2,      1]
[14,          9,      3,     1]
[88,         56,     18,     4,    1]
[694,       440,    140,    30,    5,   1]
[6578,     4164,   1320,   280,   45,   6,  1]
[72792,   46046,  14574,  3080,  490,  63,  7, 1]
[920904, 582336, 184184, 38864, 6160, 784, 84, 8, 1]
		

Crossrefs

Row sums: A291978.
Columns: A007840 (c=1), A052860 (c=2).
Diagonal: A045943 (d=3).
Cf. A291980.

Programs

  • Maple
    T_row := proc(n) exp(x*t)/(1 + log(1+x)): series(%, x, n+1):
    seq(coeff((-1)^(n-k)*n!*coeff(%,x,n),t,k), k=0..n) end:
    seq(T_row(n), n=0..9);
  • Mathematica
    T[n_, k_] := Binomial[n, n - k]*Sum[j!*Abs[StirlingS1[n - k, j]], {j, 0, n - k}]; Flatten[Table[T[n, k], {n, 0, 9}, {k, 0, n}]] (* Detlef Meya, May 12 2024 *)

Formula

T(n, k) = binomial(n, n - k)*Sum_{j=0..n - k} j!*abs(Stirling1(n - k, j)). - Detlef Meya, May 12 2024

A355718 Expansion of e.g.f. exp( x/(1 + log(1-x)) ).

Original entry on oeis.org

1, 1, 3, 16, 117, 1071, 11725, 149122, 2158401, 35006941, 628552231, 12372376116, 264849067549, 6124239060915, 152099146415385, 4037206919213686, 114038575520545153, 3415098936831144537, 108065651366801837611, 3602585901321224507992
Offset: 0

Views

Author

Seiichi Manyama, Jul 15 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x/(1+log(1-x)))))
    
  • PARI
    a007840(n) = sum(k=0, n, k!*abs(stirling(n, k, 1)));
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, j*a007840(j-1)*binomial(i-1, j-1)*v[i-j+1])); v;

Formula

a(0) = 1; a(n) = Sum_{k=1..n} A052860(k) * binomial(n-1,k-1) * a(n-k).
a(n) ~ n^(n-1/4) * exp(1/4 - exp(-1) + 2*exp(-1/2)*sqrt(n)) / (sqrt(2) * (exp(1) - 1)^n). - Vaclav Kotesovec, Jul 15 2022
Showing 1-3 of 3 results.