A052875 E.g.f.: (exp(x)-1)^2/(2-exp(x)).
0, 0, 2, 12, 74, 540, 4682, 47292, 545834, 7087260, 102247562, 1622632572, 28091567594, 526858348380, 10641342970442, 230283190977852, 5315654681981354, 130370767029135900, 3385534663256845322, 92801587319328411132, 2677687796244384203114, 81124824998504073881820
Offset: 0
Examples
a(3) = 12 because we have: {{1}}, {{2}}, {{3}}, {{1,2}}, {{1,3}}, {{2,3}}, {{1}, {1,2}}, {{1}, {1,3}}, {{2}, {1,2}}, {{2}, {2,3}}, {{3}, {1,3}}, {{3}, {2,3}}. - _Geoffrey Critzer_, Sep 01 2014
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 846
- R. B. Nelsen and H. Schmidt, Jr., Chains in power sets, Math. Mag., 64 (1991), 23-31.
- Wikipedia, Ordered Bell number
Programs
-
Maple
spec := [S, {B = Set(Z, 1 <= card), C = Sequence(B, 1 <= card), S=Prod(B, C)}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
-
Mathematica
CoefficientList[Series[(E^x-1)^2/(2-E^x), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Feb 25 2014 *)
-
PARI
a(n)=if(n<0,0,n!*polcoeff(subst(y^2/(1-y),y,exp(x+x*O(x^n))-1),n))
-
Sage
def A052875(n): return add(add((-1)^(j-i)*binomial(j,i)*i^n for i in range(n+1)) for j in range(n+1)) - 1 [A052875(n) for n in range(19)] # Peter Luschny, Jul 22 2014
Formula
Second column of A084416: Sum_{i=2..n} i!*Stirling2(n, i) = A000670(n)-1. - Vladeta Jovovic, Sep 15 2003
E.g.f.: (exp(x)-1)^2/(2-exp(x)).
a(n) ~ n! / (2 * (log(2))^(n+1)). - Vaclav Kotesovec, Feb 25 2014
E.g.f.: A(x)*(1/(1 - A(x)) - 1) where A(x)=exp(x)-1. - Geoffrey Critzer, Sep 01 2014
Extensions
New name using e.g.f., Vaclav Kotesovec, Feb 25 2014
Comments