cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052925 Expansion of (2-6*x+4*x^2-x^3)/((1-x)*(1-3*x+x^2)).

Original entry on oeis.org

2, 2, 4, 9, 22, 56, 145, 378, 988, 2585, 6766, 17712, 46369, 121394, 317812, 832041, 2178310, 5702888, 14930353, 39088170, 102334156, 267914297, 701408734, 1836311904, 4807526977, 12586269026, 32951280100, 86267571273
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Crossrefs

Apart from first term, same as A055588.

Programs

  • GAP
    a:=[2,4,9];; for n in [4..30] do a[n]:=4*a[n-1]-4*a[n-2]+a[n-3]; od; Concatenation([2], a); # G. C. Greubel, Oct 17 2019
  • Magma
    I:=[2,2,4,9]; [n le 4 select I[n] else 4*Self(n-1)-4*Self(n-2) +Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jun 22 2012
    
  • Maple
    spec:=[S,{S=Union(Sequence(Z),Sequence(Prod(Sequence(Z),Sequence(Z),Z) ))}, unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
    seq(coeff(series((2-6*x+4*x^2-x^3)/((1-x)*(1-3*x+x^2)), x, n+1), x, n), n = 0..30); # G. C. Greubel, Oct 17 2019
  • Mathematica
    CoefficientList[Series[(-2+6*x-4*x^2+x^3)/(-1+x)/(1-3*x+x^2),{x,0,40}],x] (* Vincenzo Librandi, Jun 22 2012 *)
    LinearRecurrence[{4,-4,1}, {2,2,4,9}, 30] (* G. C. Greubel, Oct 17 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((2-6*x+4*x^2-x^3)/((1-x)*(1-3*x+x^2))) \\ G. C. Greubel, Oct 17 2019
    
  • Sage
    def A052925_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((2-6*x+4*x^2-x^3)/((1-x)*(1-3*x+x^2))).list()
    A052925_list(30) # G. C. Greubel, Oct 17 2019
    

Formula

G.f.: (2-6*x+4*x^2-x^3)/((1-x)*(1-3*x+x^2)).
a(n) = 4*a(n-1) - 4*a(n-2) + a(n-3), with a(0)=2, a(1)=2, a(2)=4, a(3)=9.
a(n) = 1 + Sum_{alpha=RootOf(1-3*z+z^2)} (1/5)*(2-3*alpha)*alpha^(-1-n).

Extensions

More terms from James Sellers, Jun 05 2000