cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052937 Expansion of (2-3*x-x^2)/((1-x)*(1-2*x-x^2)).

Original entry on oeis.org

2, 3, 6, 13, 30, 71, 170, 409, 986, 2379, 5742, 13861, 33462, 80783, 195026, 470833, 1136690, 2744211, 6625110, 15994429, 38613966, 93222359, 225058682, 543339721, 1311738122, 3166815963, 7645370046, 18457556053, 44560482150, 107578520351, 259717522850
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Crossrefs

Programs

  • GAP
    a:=[2,3,6];; for n in [4..30] do a[n]:=3*a[n-1]-a[n-2]-a[n-3]; od; a; # G. C. Greubel, Oct 18 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (2-3*x-x^2)/((1-x)*(1-2*x-x^2)) )); // G. C. Greubel, Oct 18 2019
    
  • Maple
    spec:= [S,{S=Union(Sequence(Z),Sequence(Union(Z,Z,Prod(Z,Z))))},unlabeled ]: seq(combstruct[count ](spec, size=n), n=0..20);
    seq(coeff(series((2-3*x-x^2)/((1-x)*(1-2*x-x^2)), x, n+1), x, n), n = 0..30); # G. C. Greubel, Oct 18 2019
  • Mathematica
    CoefficientList[Series[(2-3x-x^2)/((1-x)(1-2x-x^2)),{x,0,30}],x] (* or *) LinearRecurrence[{3,-1,-1},{2,3,6},40] (* Harvey P. Dale, May 27 2017 *)
    1+Fibonacci[Range[31],2] (* G. C. Greubel, Oct 18 2019 *)
  • PARI
    Vec((2-3*x-x^2)/((1-x)*(1-2*x-x^2)) + O(x^50)) \\ Colin Barker, Mar 16 2016
    
  • Sage
    [1 + lucas_number1(n+1, 2, -1) for n in (0..30)] # G. C. Greubel, Oct 18 2019
    

Formula

G.f.: (2-3*x-x^2)/((1-x)*(1-2*x-x^2)).
a(n) = 2*a(n-1) + a(n-2) - 2, with a(0)=2, a(1)=3, a(2)=6.
a(n) = 1 + Sum_{alpha=RootOf(-1+2*z+z^2)} (1 + alpha)*alpha^(-1-n)/4.
a(n) = A000129(n+1) + 1, where A000129 are the Pell Numbers. - Graeme McRae, Aug 03 2006
a(n) = (1 + (-(1-sqrt(2))^(1+n) + (1+sqrt(2))^(1+n))/(2*sqrt(2))). - Colin Barker, Mar 16 2016

Extensions

More terms from James Sellers, Jun 05 2000