A052945 Number of compositions of n when each odd part can be of two kinds.
1, 2, 5, 14, 38, 104, 284, 776, 2120, 5792, 15824, 43232, 118112, 322688, 881600, 2408576, 6580352, 17977856, 49116416, 134188544, 366609920, 1001596928, 2736413696, 7476021248, 20424869888, 55801782272, 152453304320
Offset: 0
Examples
a(3)=14 because we have (3),(3'),(1,2),(1',2),(2,1),(2,1'),(1,1,1),(1,1,1'),(1,1',1),(1,1',1'),(1',1,1),(1',1,1'),(1',1',1) and (1',1',1'). There are a(3)=14 such compositions of 3. Here p:s stands for "part p of sort s": 01: [ 1:0 1:0 1:0 ] 02: [ 1:0 1:0 1:1 ] 03: [ 1:0 1:1 1:1 ] 04: [ 1:0 2:0 ] 05: [ 1:0 2:1 ] 06: [ 1:1 1:1 1:1 ] 07: [ 1:1 2:0 ] 08: [ 1:1 2:1 ] 09: [ 2:0 1:0 ] 10: [ 2:0 1:1 ] 11: [ 2:1 1:0 ] 12: [ 2:1 1:1 ] 13: [ 3:0 ] 14: [ 3:1 ] - _Joerg Arndt_, Apr 28 2013
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 1004
- S. Schuster, M. Fichtner and S. Sasso, Use of Fibonacci numbers in lipidomics - Enumerating various classes of fatty acids, Sci. Rep., 7 (2017) 39821.
- Index entries for linear recurrences with constant coefficients, signature (2,2).
Crossrefs
Row sums of A105474.
Programs
-
GAP
a:=[2,5];; for n in [3..30] do a[n]:=2*(a[n-1]+a[n-2]); od; Concatenation([1], a); # G. C. Greubel, Oct 18 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-x^2)/(1-2*x-2*x^2) )); // G. C. Greubel, Oct 18 2019 -
Maple
spec:= [S,{S=Sequence(Prod(Union(Sequence(Prod(Z,Z)),Sequence(Z)),Z))}, unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20); seq(coeff(series((1-x^2)/(1-2*x-2*x^2), x, n+1), x, n), n = 0..30); # G. C. Greubel, Oct 18 2019
-
Mathematica
LinearRecurrence[{2,2,}, {1,2,5}, 30] (* G. C. Greubel, Oct 18 2019 *)
-
PARI
Vec((x-1)*(1+x)/(-1+2*x+2*x^2)+O(x^30)) \\ Charles R Greathouse IV, Nov 20 2011
-
Sage
def A052945_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( (1-x^2)/(1-2*x-2*x^2) ).list() A052945_list(30) # G. C. Greubel, Oct 18 2019
Formula
G.f.: (1 - x)*(1 + x)/(1 - 2*x - 2*x^2).
a(n) = 2*(a(n-1) + a(n-2)).
a(n) = Sum_{alpha=RootOf(-1+2*z+2z^2)} alpha^(-1-n)/4.
From Al Hakanson (hawkuu(AT)gmail.com), Jun 29 2009: (Start)
a(n) = ((2+sqrt(3))*(1+sqrt(3))^(n-1) + (2-sqrt(3))*(1-sqrt(3))^(n-1))/2 for n>0.
First binomial transform of 2, 3, 6, 9, 18, 27, 54, 81, ... starting after 1. (End)
Extensions
More terms from James Sellers, Jun 05 2000
Better description from Emeric Deutsch, Apr 09 2005
Comments