cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052945 Number of compositions of n when each odd part can be of two kinds.

Original entry on oeis.org

1, 2, 5, 14, 38, 104, 284, 776, 2120, 5792, 15824, 43232, 118112, 322688, 881600, 2408576, 6580352, 17977856, 49116416, 134188544, 366609920, 1001596928, 2736413696, 7476021248, 20424869888, 55801782272, 152453304320
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Also number of compositions of n into 2 sorts of parts where the kinds of parts are unordered inside a run of identical parts, see example. Replacing "unordered" by "ordered" gives A025192. - Joerg Arndt, Apr 28 2013
Numbers of straight-chain fatty acids involving oxo groups (or hydroxy groups), if cis-/trans isomerism is considered while stereoisomerism is neglected. - Stefan Schuster, Apr 19 2018

Examples

			a(3)=14 because we have (3),(3'),(1,2),(1',2),(2,1),(2,1'),(1,1,1),(1,1,1'),(1,1',1),(1,1',1'),(1',1,1),(1',1,1'),(1',1',1) and (1',1',1').
There are a(3)=14 such compositions of 3. Here p:s stands for "part p of sort s":
01:  [ 1:0  1:0  1:0  ]
02:  [ 1:0  1:0  1:1  ]
03:  [ 1:0  1:1  1:1  ]
04:  [ 1:0  2:0  ]
05:  [ 1:0  2:1  ]
06:  [ 1:1  1:1  1:1  ]
07:  [ 1:1  2:0  ]
08:  [ 1:1  2:1  ]
09:  [ 2:0  1:0  ]
10:  [ 2:0  1:1  ]
11:  [ 2:1  1:0  ]
12:  [ 2:1  1:1  ]
13:  [ 3:0  ]
14:  [ 3:1  ]
- _Joerg Arndt_, Apr 28 2013
		

Crossrefs

Row sums of A105474.

Programs

  • GAP
    a:=[2,5];; for n in [3..30] do a[n]:=2*(a[n-1]+a[n-2]); od; Concatenation([1], a); # G. C. Greubel, Oct 18 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-x^2)/(1-2*x-2*x^2) )); // G. C. Greubel, Oct 18 2019
    
  • Maple
    spec:= [S,{S=Sequence(Prod(Union(Sequence(Prod(Z,Z)),Sequence(Z)),Z))}, unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
    seq(coeff(series((1-x^2)/(1-2*x-2*x^2), x, n+1), x, n), n = 0..30); # G. C. Greubel, Oct 18 2019
  • Mathematica
    LinearRecurrence[{2,2,}, {1,2,5}, 30] (* G. C. Greubel, Oct 18 2019 *)
  • PARI
    Vec((x-1)*(1+x)/(-1+2*x+2*x^2)+O(x^30)) \\ Charles R Greathouse IV, Nov 20 2011
    
  • Sage
    def A052945_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-x^2)/(1-2*x-2*x^2) ).list()
    A052945_list(30) # G. C. Greubel, Oct 18 2019
    

Formula

G.f.: (1 - x)*(1 + x)/(1 - 2*x - 2*x^2).
a(n) = 2*(a(n-1) + a(n-2)).
a(n) = Sum_{alpha=RootOf(-1+2*z+2z^2)} alpha^(-1-n)/4.
From Al Hakanson (hawkuu(AT)gmail.com), Jun 29 2009: (Start)
a(n) = ((2+sqrt(3))*(1+sqrt(3))^(n-1) + (2-sqrt(3))*(1-sqrt(3))^(n-1))/2 for n>0.
First binomial transform of 2, 3, 6, 9, 18, 27, 54, 81, ... starting after 1. (End)

Extensions

More terms from James Sellers, Jun 05 2000
Better description from Emeric Deutsch, Apr 09 2005