A052949 Expansion of (2-4*x+x^3)/((1-x)*(1-2*x-x^2+x^3)).
2, 2, 4, 7, 15, 32, 71, 158, 354, 794, 1783, 4005, 8998, 20217, 45426, 102070, 229348, 515339, 1157955, 2601900, 5846415, 13136774, 29518062, 66326482, 149034251, 334876921, 752461610, 1690765889, 3799116466, 8536537210, 19181424996
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 1008
- Index entries for linear recurrences with constant coefficients, signature (3,-1,-2,1).
Crossrefs
Cf. A006356.
Programs
-
GAP
a:=[2,2,4,7];; for n in [5..40] do a[n]:=3*a[n-1]-a[n-2]-2*a[n-3] +a[n-4]; od; a; # G. C. Greubel, Oct 21 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (2-4*x+x^3)/((1-x)*(1-2*x-x^2+x^3)) )); // G. C. Greubel, Oct 21 2019 -
Maple
spec:= [S,{S=Union(Sequence(Prod(Union(Sequence(Z),Z),Z)),Sequence(Z))}, unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20); seq(coeff(series((2-4*x+x^3)/((1-x)*(1-2*x-x^2+x^3)), x, n+1), x, n), n = 0..40); # G. C. Greubel, Oct 21 2019
-
Mathematica
LinearRecurrence[{3,-1,-2,1}, {2,2,4,7}, 40] (* G. C. Greubel, Oct 21 2019 *) CoefficientList[Series[(2-4x+x^3)/((1-x)(1-2x-x^2+x^3)),{x,0,50}],x] (* Harvey P. Dale, Jul 30 2024 *)
-
PARI
my(x='x+O('x^40)); Vec((2-4*x+x^3)/((1-x)*(1-2*x-x^2+x^3))) \\ G. C. Greubel, Oct 21 2019
-
Sage
def A052949_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P((2-4*x+x^3)/((1-x)*(1-2*x-x^2+x^3))).list() A052949_list(40) # G. C. Greubel, Oct 21 2019
Formula
G.f.: (2 -4*x +x^3)/((1-x)*(1 -2*x -x^2 +x^3)).
a(n) = 2*a(n-1) + a(n-2) - a(n-3) - 1.
a(n) = A006356(n-1) + 1, n>0.
a(n) = 1 + Sum_{alpha=RootOf(1-2*z-z^2+z^3)} (1/7)*(1 + 2*alpha - alpha^2)*alpha^(-1-n).
Extensions
More terms from James Sellers, Jun 05 2000