cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052949 Expansion of (2-4*x+x^3)/((1-x)*(1-2*x-x^2+x^3)).

Original entry on oeis.org

2, 2, 4, 7, 15, 32, 71, 158, 354, 794, 1783, 4005, 8998, 20217, 45426, 102070, 229348, 515339, 1157955, 2601900, 5846415, 13136774, 29518062, 66326482, 149034251, 334876921, 752461610, 1690765889, 3799116466, 8536537210, 19181424996
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Crossrefs

Cf. A006356.

Programs

  • GAP
    a:=[2,2,4,7];; for n in [5..40] do a[n]:=3*a[n-1]-a[n-2]-2*a[n-3] +a[n-4]; od; a; # G. C. Greubel, Oct 21 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (2-4*x+x^3)/((1-x)*(1-2*x-x^2+x^3)) )); // G. C. Greubel, Oct 21 2019
    
  • Maple
    spec:= [S,{S=Union(Sequence(Prod(Union(Sequence(Z),Z),Z)),Sequence(Z))}, unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
    seq(coeff(series((2-4*x+x^3)/((1-x)*(1-2*x-x^2+x^3)), x, n+1), x, n), n = 0..40); # G. C. Greubel, Oct 21 2019
  • Mathematica
    LinearRecurrence[{3,-1,-2,1}, {2,2,4,7}, 40] (* G. C. Greubel, Oct 21 2019 *)
    CoefficientList[Series[(2-4x+x^3)/((1-x)(1-2x-x^2+x^3)),{x,0,50}],x] (* Harvey P. Dale, Jul 30 2024 *)
  • PARI
    my(x='x+O('x^40)); Vec((2-4*x+x^3)/((1-x)*(1-2*x-x^2+x^3))) \\ G. C. Greubel, Oct 21 2019
    
  • Sage
    def A052949_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((2-4*x+x^3)/((1-x)*(1-2*x-x^2+x^3))).list()
    A052949_list(40) # G. C. Greubel, Oct 21 2019
    

Formula

G.f.: (2 -4*x +x^3)/((1-x)*(1 -2*x -x^2 +x^3)).
a(n) = 2*a(n-1) + a(n-2) - a(n-3) - 1.
a(n) = A006356(n-1) + 1, n>0.
a(n) = 1 + Sum_{alpha=RootOf(1-2*z-z^2+z^3)} (1/7)*(1 + 2*alpha - alpha^2)*alpha^(-1-n).

Extensions

More terms from James Sellers, Jun 05 2000