cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052950 Expansion of (2-3*x-x^2+x^3)/((1-x)*(1+x)*(1-2*x)).

Original entry on oeis.org

2, 1, 3, 4, 9, 16, 33, 64, 129, 256, 513, 1024, 2049, 4096, 8193, 16384, 32769, 65536, 131073, 262144, 524289, 1048576, 2097153, 4194304, 8388609, 16777216, 33554433, 67108864, 134217729, 268435456, 536870913, 1073741824, 2147483649
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Equals row sums of triangle A178616 but replacing the 2 with a 1. - Gary W. Adamson, May 30 2010
Inverse binomial transform is (-1)^n * a(n). - Michael Somos, Jun 03 2014
An autosequence of the second kind whose first kind companion is A005578. - Jean-François Alcover, Mar 18 2020

Examples

			G.f. = 2 + x + 3*x^2 + 4*x^3 + 9*x^4 + 16*x^5 + 33*x^6 + 64*x^7 + 129*x^8 + ...
		

Crossrefs

Cf. A178616. - Gary W. Adamson, May 30 2010

Programs

  • GAP
    Concatenation([2], List([1..40], n-> (2^n +1 +(-1)^n)/2));  # G. C. Greubel, Oct 21 2019
  • Magma
    [2] cat [(2^n +1 +(-1)^n)/2: n in [1..40]]; // G. C. Greubel, Oct 21 2019
    
  • Maple
    spec:= [S,{S=Union(Sequence(Prod(Sequence(Z),Z)), Sequence(Prod(Z,Z)))}, unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
    seq(`if`(n=0, 2, (2^n +1 +(-1)^n)/2), n=0..40); # G. C. Greubel, Oct 21 2019
  • Mathematica
    a[n_]:= (2^n +1 +(-1)^n +Boole[n==0])/2; (* Michael Somos, Jun 03 2014 *)
    a[n_]:= If[ n<0, (1-n)! SeriesCoefficient[Sinh[x] +Exp[x/2], {x,0,1-n}], n! SeriesCoefficient[Cosh[x](1+Exp[x]), {x,0,n}]]; (* Michael Somos, Jun 04 2014 *)
    LinearRecurrence[{2,1,-2}, {2,1,3,4}, 40] (* G. C. Greubel, Oct 21 2019 *)
  • PARI
    {a(n)=(2^n+1+(-1)^n+(n==0))/2}; /* Michael Somos, Jun 03 2014 */
    
  • Sage
    [2]+[(2^n +1 +(-1)^n)/2 for n in (1..40)] # G. C. Greubel, Oct 21 2019
    

Formula

G.f.: (2-3*x-x^2+x^3)/((1-x^2)*(1-2*x)).
a(n) = a(n-1) + 2*a(n-2) - 1.
a(n) = 2^(n-1) + Sum_{alpha=RootOf(-1+z^2)} alpha^(-n)/2.
From Paul Barry, Sep 18 2003: (Start)
a(n) = (2^n + 1 + (-1)^n + 0^n)/2.
E.g.f.: cosh(x)*(1+exp(x)). (End)
a(2*n + 1) = 4 * a(2*n - 1) for all n in Z. a(2*n + 2) = 3*a(2*n + 1) + 2*a(2*n) if n>0. - Michael Somos, Jun 04 2014

Extensions

More terms from James Sellers, Jun 05 2000