cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052964 Expansion of (1-x)/((1-2x)(1+x-x^2)).

Original entry on oeis.org

1, 0, 3, 1, 10, 7, 35, 36, 127, 165, 474, 715, 1807, 3004, 6995, 12393, 27370, 50559, 107883, 204820, 427351, 826045, 1698458, 3321891, 6765175, 13333932, 26985675, 53457121, 107746282, 214146295, 430470899, 857417220, 1720537327
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Number of walks of length n+1 between two adjacent vertices in the cycle graph C_5. Example: a(2)=3 because in the cycle ABCDE we have three walks of length 3 between A and B: ABAB, ABCB and AEAB. - Emeric Deutsch, Apr 01 2004
In general a(n,m)=2^n/m*Sum(k,0,m-1,Cos(2Pi*k/m)^(n+1)) gives number of walks of length n between two adjacent vertices in the cycle graph C_m. Here we have m=5. - Herbert Kociemba, May 31 2004
Counts walks of length n at the vertex of degree 3 of the graph with adjacency matrix A=[0,1,1,1;1,0,0,0;1,0,0,0;1,0,0,1]. Binomial transform is (L(n-2)+2*3^n)/5, or A099159. - Paul Barry, Oct 01 2004
Also, the cogrowth sequence for the 10-element dihedral group D5; that is a(n) is the number of words of length n+2 that reduce to the identity using the presentation . - Sean A. Irvine, Nov 04 2024

Programs

  • Maple
    spec := [S,{S=Sequence(Prod(Union(Prod(Sequence(Z),Z),Z,Z),Z))},unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
  • Mathematica
    CoefficientList[Series[(1-x)/((1-2x)(1+x-x^2)),{x,0,40}],x] (* or *) LinearRecurrence[{1,3,-2},{1,0,3},40] (* Harvey P. Dale, Jun 03 2019 *)

Formula

G.f.: -(-1+x)/(1-x-3*x^2+2*x^3)
Recurrence: {a(1)=0, a(0)=1, a(2)=3, 2*a(n)-3*a(n+1)-a(n+2)+a(n+3)=0}
Sum(-1/25*(-1-11*_alpha+6*_alpha^2)*_alpha^(-1-n), _alpha=RootOf(1-_Z-3*_Z^2+2*_Z^3))
a(n-1)=2^n/5*Sum(k, 0, 4, Cos(2Pi*k/5)^(n+1)), n>=1 - Herbert Kociemba, May 31 2004
a(n)=((sqrt(5)-1)/2)^n(3/10-sqrt(5)/10)+((-sqrt(5)-1)/2)^n(3/10+sqrt(5)/10)+2^(n+1)/5 - Paul Barry, Oct 01 2004
a(n) = (2^(n+1) + A000032(n+2)*(-1)^n)/5 - Ross La Haye, May 31 2006
a(n) = |A084179(n+1)|-|A084179(n)|. - R. J. Mathar, Feb 27 2019