cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052971 Expansion of (1-x)/(1-2*x-2*x^3+2*x^4).

Original entry on oeis.org

1, 1, 2, 6, 12, 26, 60, 132, 292, 652, 1448, 3216, 7152, 15896, 35328, 78528, 174544, 387952, 862304, 1916640, 4260096, 9468896, 21046464, 46779840, 103977280, 231109696, 513686144, 1141767168, 2537799168, 5640751232, 12537664512, 27867393024, 61940690176
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

a(n) is the number of compositions of n using three colors of 3. Compare to A077998 which gives the number of compositions of n using two colors of 2. - Greg Dresden and Yushu Fan, Aug 15 2023

Crossrefs

Cf. A077998.

Programs

  • Maple
    spec := [S,{S=Sequence(Prod(Union(Prod(Union(Z,Z),Z),Sequence(Z)),Z))},unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
  • Mathematica
    CoefficientList[Series[(1-x)/(1-2x-2x^3+2x^4),{x,0,30}],x] (* or *) LinearRecurrence[{2,0,2,-2},{1,1,2,6},32] (* Harvey P. Dale, Jul 23 2012 *)

Formula

G.f.: -(-1+x)/(1-2*x-2*x^3+2*x^4).
Recurrence: {a(1)=1, a(0)=1, a(3)=6, a(2)=2, 2*a(n)-2*a(n+1)-2*a(n+3)+a(n+4)=0}.
Sum(-1/227*(-29-50*_alpha+45*_alpha^3-14*_alpha^2)*_alpha^(-1-n), _alpha=RootOf(1-2*_Z-2*_Z^3+2*_Z^4)).

Extensions

More terms from James Sellers, Jun 06 2000