cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052986 Expansion of ( 1-2*x ) / ( (x-1)*(2*x^2+3*x-1) ).

Original entry on oeis.org

1, 2, 7, 24, 85, 302, 1075, 3828, 13633, 48554, 172927, 615888, 2193517, 7812326, 27824011, 99096684, 352938073, 1257007586, 4476898903, 15944711880, 56787933445, 202253224094, 720335539171, 2565513065700, 9137210275441, 32542656957722, 115902391424047
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Programs

  • Magma
    I:=[1, 2, 7]; [n le 3 select I[n] else 4*Self(n-1)-Self(n-2)-2*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jun 23 2012
    
  • Maple
    spec := [S,{S=Sequence(Union(Prod(Union(Sequence(Union(Z,Z)),Z),Z),Z))},unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
  • Mathematica
    Join[{a=1,b=2},Table[c=3*b+2*a-1;a=b;b=c,{n,100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 17 2011*)
    LinearRecurrence[{4,-1,-2},{1,2,7},40] (* Vincenzo Librandi, Jun 23 2012 *)
  • PARI
    a(n) = round((1/4+(2^(-3-n)*((3-sqrt(17))^n*(-5+3*sqrt(17))+(3+sqrt(17))^n*(5+3*sqrt(17))))/sqrt(17))) \\ Colin Barker, Sep 02 2016

Formula

G.f.: (1-2*x)/(1-4*x+x^2+2*x^3).
Recurrence: {a(0)=1, a(1)=2, -2*a(n)-3*a(n+1)+a(n+2)+1=0}.
a(n) = Sum(-1/136*(-13-27*r+6*r^2)*r^(-1-n) where r=RootOf(1-4*_Z+_Z^2+2*_Z^3)).
a(n) = (1/4+(2^(-3-n)*((3-sqrt(17))^n*(-5+3*sqrt(17))+(3+sqrt(17))^n*(5+3*sqrt(17))))/sqrt(17)). - Colin Barker, Sep 02 2016
4*a(n) = 1+3*A007482(n)-2*A007482(n-1) - R. J. Mathar, Feb 27 2019
a(n)-a(n-1) = A007483(n-1). - R. J. Mathar, Jan 09 2025

Extensions

More terms from James Sellers, Jun 06 2000