cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052991 Expansion of (1-x-x^2)/(1-3x-x^2).

Original entry on oeis.org

1, 2, 6, 20, 66, 218, 720, 2378, 7854, 25940, 85674, 282962, 934560, 3086642, 10194486, 33670100, 111204786, 367284458, 1213058160, 4006458938, 13232434974, 43703763860, 144343726554, 476734943522, 1574548557120, 5200380614882, 17175690401766, 56727451820180
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Crossrefs

Programs

  • Maple
    spec := [S,{S=Sequence(Prod(Sequence(Union(Prod(Z,Z),Z)),Union(Z,Z)))},unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
  • Mathematica
    CoefficientList[Series[(1-x-x^2)/(1-3x-x^2),{x,0,30}],x] (* or *) LinearRecurrence[{3,1},{1,2,6},30] (* Harvey P. Dale, May 10 2022 *)

Formula

G.f.: (-1+x+x^2)/(-1+3*x+x^2).
Recurrence: {a(0)=1, a(1)=2, a(n)+3*a(n+1)-a(n+2), a(2)=6}.
Sum(-2/13*(3*_alpha-2)*_alpha^(-1-n), _alpha=RootOf(-1+3*_Z+_Z^2)).
a(n) = Sum_{k=0..n} A155161(n,k)*2^k. - Philippe Deléham, Feb 08 2012
G.f.: 1/Q(0), where Q(k) = 1 + x^2 - (2*k+1)*x + x*(2*k-1 - x)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 05 2013
a(n) = A006190(n+1)-A006190(n)-A006190(n-1). - R. J. Mathar, Feb 27 2019
a(n) = 2*A006190(n) for n>=1. - Philippe Deléham, Mar 09 2023

Extensions

More terms from James Sellers, Jun 06 2000