cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A155161 A Fibonacci convolution triangle: Riordan array (1, x/(1 - x - x^2)). Triangle T(n,k), 0 <= k <= n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 3, 5, 3, 1, 0, 5, 10, 9, 4, 1, 0, 8, 20, 22, 14, 5, 1, 0, 13, 38, 51, 40, 20, 6, 1, 0, 21, 71, 111, 105, 65, 27, 7, 1, 0, 34, 130, 233, 256, 190, 98, 35, 8, 1, 0, 55, 235, 474, 594, 511, 315, 140, 44, 9, 1, 0, 89, 420, 942, 1324, 1295, 924, 490, 192, 54, 10, 1
Offset: 0

Views

Author

Philippe Deléham, Jan 21 2009

Keywords

Examples

			Triangle begins:
[0] 1;
[1] 0,  1;
[2] 0,  1,   1;
[3] 0,  2,   2,   1;
[4] 0,  3,   5,   3,   1;
[5] 0,  5,  10,   9,   4,   1;
[6] 0,  8,  20,  22,  14,   5,  1;
[7] 0, 13,  38,  51,  40,  20,  6,  1;
[8] 0, 21,  71, 111, 105,  65, 27,  7, 1;
[9] 0, 34, 130, 233, 256, 190, 98, 35, 8, 1.
		

Crossrefs

Row sums are in A215928.
Central terms: T(2*n,n) = A213684(n) for n > 0.

Programs

  • Haskell
    a155161 n k = a155161_tabl !! n !! k
    a155161_row n = a155161_tabl !! n
    a155161_tabl = [1] : [0,1] : f [0] [0,1] where
       f us vs = ws : f vs ws where
         ws = zipWith (+) (us ++ [0,0]) $ zipWith (+) ([0] ++ vs) (vs ++ [0])
    -- Reinhard Zumkeller, Apr 17 2013
  • Maple
    T := (n, k) -> binomial(n-1, k-1)*hypergeom([-(n-k)/2, -(n-k-1)/2], [1-n], -4):
    seq(seq(simplify(T(n, k)), k = 0..n), n = 0..11); # Peter Luschny, May 23 2021
    # Uses function PMatrix from A357368.
    PMatrix(10, n -> combinat:-fibonacci(n)); # Peter Luschny, Oct 07 2022
  • Mathematica
    CoefficientList[#, y]& /@ CoefficientList[(1-x-x^2)/(1-x-x^2-x*y)+O[x]^12, x] // Flatten (* Jean-François Alcover, Mar 01 2019 *)
    (* Generates the triangle without the leading '1' (rows are rearranged). *)
    (* Function RiordanSquare defined in A321620. *)
    RiordanSquare[x/(1 - x - x^2), 11] // Flatten  (* Peter Luschny, Feb 27 2021 *)
  • Maxima
    M(n,k):=pochhammer(n,k)/k!;
    create_list(sum(M(k,i)*binomial(i,n-i-k),i,0,n-k),n,0,8,k,0,n); /* Emanuele Munarini, Mar 15 2011 */
    

Formula

T(n, k) given by [0,1,1,-1,0,0,0,...] DELTA [1,0,0,0,...] where DELTA is the operator defined in A084938.
a(n,k) = Sum_{i=0..n-k} M(k,i)*binomial(i,n-i-k), where M(n,k) = n(n+1)(n+2)...(n+k-1)/k!. - Emanuele Munarini, Mar 15 2011
Recurrence: a(n+2,k+1) = a(n+1,k+1) + a(n+1,k) + a(n,k+1). - Emanuele Munarini, Mar 15 2011
G.f.: (1-x-x^2)/(1-x-x^2-x*y). - Philippe Deléham, Feb 08 2012
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A000129(n) (n > 0), A052991(n), A155179(n), A155181(n), A155195(n), A155196(n), A155197(n), A155198(n), A155199(n) for x = 0,1,2,3,4,5,6,7,8,9 respectively. - Philippe Deléham, Feb 08 2012
T(n, k) = binomial(n-1, k-1)*hypergeom([-(n-k)/2, -(n-k-1)/2], [1-n], -4). - Peter Luschny, May 23 2021

A181870 a(1) = 2, a(2) = 1. For n >= 3, a(n) is found by concatenating the cubes of the first n-1 terms of the sequence in reverse order and then dividing the resulting number by a(n-1).

Original entry on oeis.org

2, 1, 18, 32401, 1049824801000018, 110213211279472739469283600032400000000000000032401
Offset: 1

Views

Author

Peter Bala, Dec 09 2010

Keywords

Comments

The calculations for the first few values of the sequence are
... 2^3 = 8 so a(3) = 18/1 = 18
... 18^3 = 5832 so a(4) = 583218/18 = 32401
... 32401^3 = 34015373377201 so a(5) = 34015373377201583218/32401 = 1049824801000018.
The value of a(7) is given in the Example section below. For similarly defined sequences see A181754 through A181756 and A181864 through A181869.

Examples

			a(7) = 12 14695 19405 33697 08585 73749 64887 08343 06977 30753 71161 37983 82152 46308 85158 49299 58480 00000 00001 04982 48010 00000 00000 00000 00000 00000 00000 00000 00000 00000 00001 04982 48010 00018 has 167 digits.
		

Crossrefs

Programs

  • Maple
    #A181870
    M:=6: a:=array(1..M):s:=array(1..M):
    a[1]:=2: a[2]:=1:
    s[1]:=convert(a[1]^3,string): s[2]:=cat(convert(a[2]^3,string),s[1]):
    for n from 3 to M do
    a[n] := parse(s[n-1])/a[n-1];
    s[n]:= cat(convert(a[n]^3,string),s[n-1]);
    end do:
    seq(a[n],n = 1..M);

Formula

DEFINITION
a(1) = 2, a(2) = 1, and for n >= 3,
(1)... a(n) = concatenate (a(n-1)^3,a(n-2)^3,...,a(1)^3)/a(n-1).
RECURRENCE RELATION
It appears that for n >= 2,
(2)... a(n+2) = 100^F(n-1,3)*a(n+1)^2 + a(n)
= 100^A006190(n-1)*a(n+1)^2 + a(n)
= 10^A052991(n-1)*a(n+1)^2 + a(n),
where F(n,3) is the n-th Fibonacci polynomial F(n,x) evaluated at x = 3.
Showing 1-2 of 2 results.