A015521
a(n) = 3*a(n-1) + 4*a(n-2), a(0) = 0, a(1) = 1.
Original entry on oeis.org
0, 1, 3, 13, 51, 205, 819, 3277, 13107, 52429, 209715, 838861, 3355443, 13421773, 53687091, 214748365, 858993459, 3435973837, 13743895347, 54975581389, 219902325555, 879609302221, 3518437208883, 14073748835533
Offset: 0
G.f. = x + 3*x^2 + 13*x^3 + 51*x^4 + 205*x^5 + 819*x^6 + 3277*x^7 + 13107*x^8 + ...
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- A. Abdurrahman, CM Method and Expansion of Numbers, arXiv:1909.10889 [math.NT], 2019.
- Jean-Paul Allouche, Jeffrey Shallit, Zhixiong Wen, Wen Wu, and Jiemeng Zhang, Sum-free sets generated by the period-k-folding sequences and some Sturmian sequences, arXiv:1911.01687 [math.CO], 2019.
- J. Borowska and L. Lacinska, Recurrence form of determinant of a heptadiagonal symmetric Toeplitz matrix, J. Appl. Math. Comp. Mech. 13 (2014) 19-16, remark 2 for permanent of tridiagonal Toeplitz matrices a=3, b=2.
- Ji Young Choi, A Generalization of Collatz Functions and Jacobsthal Numbers, J. Int. Seq., Vol. 21 (2018), Article 18.5.4.
- E. M. García-Caballero, S. G. Moreno, and M. P. Prophet, A complete view of Viète-like infinite products with Fibonacci and Lucas numbers, Applied Mathematics and Computation 247 (2014) 703-711.
- Dale Gerdemann, Fractal generated from (3,4) recursion A015521, YouTube Video, Dec 4, 2014.
- F. P. Muga II, Extending the Golden Ratio and the Binet-de Moivre Formula, March 2014; Preprint on ResearchGate.
- Index entries for linear recurrences with constant coefficients, signature (3,4).
-
[Floor(4^n/5-(-1)^n/5): n in [0..30]]; // Vincenzo Librandi, Jun 24 2011
-
seq(round(4^n/5),n=0..25) # Mircea Merca, Dec 28 2010
-
k=0;lst={k};Do[k=4^n-k;AppendTo[lst, k], {n, 0, 5!}];lst (* Vladimir Joseph Stephan Orlovsky, Dec 11 2008 *)
LinearRecurrence[{3,4}, {0,1}, 30] (* Harvey P. Dale, Jun 26 2012 *)
CoefficientList[Series[x/((1 - 4 x) (1 + x)), {x, 0, 50}], x] (* Vincenzo Librandi, Mar 26 2014 *)
-
a(n) = 4^n/5-(-1)^n/5; \\ Altug Alkan, Jan 08 2016
-
first(n) = Vec(x/(1 - 3*x - 4*x^2) + O(x^n), -n) \\ Iain Fox, Dec 30 2017
-
def A015521(n): return ((1<<(n<<1))|1)//5 # Chai Wah Wu, Jun 28 2023
-
[lucas_number1(n,3,-4) for n in range(0, 24)] # Zerinvary Lajos, Apr 22 2009
A037027
Skew Fibonacci-Pascal triangle read by rows.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 3, 5, 3, 1, 5, 10, 9, 4, 1, 8, 20, 22, 14, 5, 1, 13, 38, 51, 40, 20, 6, 1, 21, 71, 111, 105, 65, 27, 7, 1, 34, 130, 233, 256, 190, 98, 35, 8, 1, 55, 235, 474, 594, 511, 315, 140, 44, 9, 1, 89, 420, 942, 1324, 1295, 924, 490, 192, 54, 10, 1, 144, 744, 1836
Offset: 0
Ratio of row polynomials R(3)/R(2) = (3 + 5*x + 3*x^2 + x^3)/(2 + 2*x + x^2) = [1+x; 1+x, 1+x].
Triangle begins:
1;
1, 1;
2, 2, 1;
3, 5, 3, 1;
5, 10, 9, 4, 1;
8, 20, 22, 14, 5, 1;
13, 38, 51, 40, 20, 6, 1;
21, 71, 111, 105, 65, 27, 7, 1;
34, 130, 233, 256, 190, 98, 35, 8, 1;
55, 235, 474, 594, 511, 315, 140, 44, 9, 1;
89, 420, 942, 1324, 1295, 924, 490, 192, 54, 10, 1;
- Reinhard Zumkeller, Rows n = 0..150 of triangle, flattened
- Harlan J. Brothers, Pascal's Prism: Supplementary Material
- Milan Janjić, Words and Linear Recurrences, J. Int. Seq. 21 (2018), #18.1.4.
- T. Mansour, Generalization of some identities involving the Fibonacci numbers, arXiv:math/0301157 [math.CO], 2003.
- P. Moree, Convoluted convolved Fibonacci numbers, arXiv:math/0311205 [math.CO], 2003.
- Yidong Sun, Numerical Triangles and Several Classical Sequences, Fib. Quart. 43, no. 4, Nov. 2005, pp. 359-370.
- Eric Weisstein's World of Mathematics, Morgan-Voyce Polynomials.
-
a037027 n k = a037027_tabl !! n !! k
a037027_row n = a037027_tabl !! n
a037027_tabl = [1] : [1,1] : f [1] [1,1] where
f xs ys = ys' : f ys ys' where
ys' = zipWith3 (\u v w -> u + v + w) (ys ++ [0]) (xs ++ [0,0]) ([0] ++ ys)
-- Reinhard Zumkeller, Jul 07 2012
-
T := (n,k) -> `if`(n=0,1,binomial(n,k)*hypergeom([(k-n)/2, (k-n+1)/2], [-n], -4)): seq(seq(simplify(T(n,k)), k=0..n), n=0..10); # Peter Luschny, Apr 25 2016
# Uses function PMatrix from A357368. Adds a row above and a column to the left.
PMatrix(10, n -> combinat:-fibonacci(n)); # Peter Luschny, Oct 07 2022
-
Mv[x, -1] = 0; Mv[x, 0] = 1; Mv[x, 1] = 1 + x; Mv[x_, n_] := Mv[x, n] = ExpandAll[(x + 1)*Mv[x, n - 1] + Mv[x, n - 2]]; Table[ CoefficientList[ Mv[x, n], x], {n, 0, 10}] // Flatten (* Roger L. Bagula, Apr 09 2008 *)
Abs[Flatten[Table[CoefficientList[CharacteristicPolynomial[Array[KroneckerDelta[#1,#2]+KroneckerDelta[#1,#2+1]*I+KroneckerDelta[#1,#2-1]*I&,{n,n}],x],x],{n,1,20}]]] (* John M. Campbell, Aug 23 2011 *)
T[n_, k_] := Binomial[n, k] Hypergeometric2F1[(k-n)/2, (k-n+1)/2, -n, -4];
Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 16 2019, after Peter Luschny *)
-
{T(n, k) = if( k<0 || k>n, 0, if( n==0 && k==0, 1, T(n-1, k) + T(n-1, k-1) + T(n-2, k)))}; /* Michael Somos, Sep 29 2003 */
-
T(n,k)=if(nPaul D. Hanna, Feb 27 2004
A122542
Triangle T(n,k), 0 <= k <= n, read by rows, given by [0, 2, -1, 0, 0, 0, 0, 0, ...] DELTA [1, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 2, 4, 1, 0, 2, 8, 6, 1, 0, 2, 12, 18, 8, 1, 0, 2, 16, 38, 32, 10, 1, 0, 2, 20, 66, 88, 50, 12, 1, 0, 2, 24, 102, 192, 170, 72, 14, 1, 0, 2, 28, 146, 360, 450, 292, 98, 16, 1, 0, 2, 32, 198, 608, 1002, 912, 462, 128, 18, 1
Offset: 0
Triangle begins:
1;
0, 1;
0, 2, 1;
0, 2, 4, 1;
0, 2, 8, 6, 1;
0, 2, 12, 18, 8, 1;
0, 2, 16, 38, 32, 10, 1;
0, 2, 20, 66, 88, 50, 12, 1;
0, 2, 24, 102, 192, 170, 72, 14, 1;
0, 2, 28, 146, 360, 450, 292, 98, 16, 1;
0, 2, 32, 198, 608, 1002, 912, 462, 128, 18, 1;
- Reinhard Zumkeller, Rows n = 0..120 of triangle, flattened
- Bela Bajnok, Additive Combinatorics: A Menu of Research Problems, arXiv:1705.07444 [math.NT], May 2017. See Sect. 2.3.
- Huyile Liang, Yanni Pei, and Yi Wang, Analytic combinatorics of coordination numbers of cubic lattices, arXiv:2302.11856 [math.CO], 2023. See p. 1.
Sums include:
A000007,
A001333 (row),
A001590 (diagonal),
A007483,
A057077 (signed row),
A078016 (signed diagonal),
A086901,
A091928,
A104934,
A122558,
A122690.
-
a122542 n k = a122542_tabl !! n !! k
a122542_row n = a122542_tabl !! n
a122542_tabl = map fst $ iterate
(\(us, vs) -> (vs, zipWith (+) ([0] ++ us ++ [0]) $
zipWith (+) ([0] ++ vs) (vs ++ [0]))) ([1], [0, 1])
-- Reinhard Zumkeller, Jul 20 2013, Apr 17 2013
-
function T(n, k) // T = A122542
if k eq 0 then return 0^n;
elif k eq n then return 1;
else return T(n-1,k) + T(n-1,k-1) + T(n-2,k-1);
end if;
end function;
[T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 27 2024
-
CoefficientList[#, y]& /@ CoefficientList[(1-x)/(1 - (1+y)x - y x^2) + O[x]^11, x] // Flatten (* Jean-François Alcover, Sep 09 2018 *)
(* Second program *)
T[n_, k_]:= T[n, k]= If[k==n, 1, If[k==0, 0, T[n-1,k-1] +T[n-1,k] +T[n-2,k- 1] ]]; (* T = A122542 *)
Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 27 2024 *)
-
def A122542_row(n):
@cached_function
def prec(n, k):
if k==n: return 1
if k==0: return 0
return prec(n-1,k-1)+2*sum(prec(n-i,k-1) for i in (2..n-k+1))
return [prec(n, k) for k in (0..n)]
for n in (0..10): print(A122542_row(n)) # Peter Luschny, Mar 16 2016
A015533
a(n) = 4*a(n-1) + 9*a(n-2).
Original entry on oeis.org
0, 1, 4, 25, 136, 769, 4300, 24121, 135184, 757825, 4247956, 23812249, 133480600, 748232641, 4194255964, 23511117625, 131792774176, 738771155329, 4141219588900, 23213818753561, 130126251314344, 729429374039425, 4088853757986796, 22920279398302009
Offset: 0
-
[n le 2 select n-1 else 4*Self(n-1)+9*Self(n-2): n in [1..30] ]; // Vincenzo Librandi, Nov 12 2012
-
a[n_]:=(MatrixPower[{{1,4},{1,-5}},n].{{1},{1}})[[2,1]]; Table[Abs[a[n]],{n,-1,40}] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *)
LinearRecurrence[{4, 9}, {0, 1}, 30] (* Vincenzo Librandi, Nov 12 2012 *)
-
x='x+O('x^30); concat([0], Vec(x/(1-4*x-9*x^2))) \\ G. C. Greubel, Jan 01 2018
-
[lucas_number1(n,4,-9) for n in range(0, 22)] # Zerinvary Lajos, Apr 23 2009
Original entry on oeis.org
1, 5, 22, 105, 511, 2534, 12720, 64449, 328900, 1688115, 8705060, 45064110, 234054198, 1219053680, 6364813192, 33302104593, 174570695175, 916628799380, 4820160541350, 25381091113455, 133808636072595, 706211862466500, 3730964595817680, 19729042153581150
Offset: 1
L.g.f.: L(x) = x + 5*x^2/2 + 22*x^3/3 + 105*x^4/4 + 511*x^5/5 +...
such that
L(x) = x*(1+x) + d/dx x^3*(1+x)^2/2! + d^2/dx^2 x^5*(1+x)^3/3! + d^3/dx^3 x^7*(1+x)^4/4! +...
The g.f. of A001002 begins:
exp(L(x)) = 1 + x + 3*x^2 + 10*x^3 + 38*x^4 + 154*x^5 + 654*x^6 +...
-
a213684 n = a155161 (2*n) n -- Reinhard Zumkeller, Apr 17 2013
-
with(orthopoly): seq(add(i, i in [seq((-1)^iquo(n-k,2)*coeff(G(n,n,x/2), x, k), k=0..n)]), n=1..24); # Peter Luschny, Jan 26 2018
-
Table[n*Sum[Binomial[k+n-1,n]*Binomial[k,n-k]/k,{k,1,n}],{n,1,20}] (* Vaclav Kotesovec, Oct 20 2012 *)
-
{a(n)=n*sum(r=1,n,binomial(r+n-1,n)*binomial(r,n-r)/r)}
for(n=1, 30, print1(a(n), ", "))
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=1); A=(sum(m=1, n+1, Dx(m-1, x^(2*m-1)*(1+x)^m/m!)+x*O(x^n))); n*polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
A215928
a(n) = 2*a(n-1) + a(n-2) for n > 2, a(0) = a(1) = 1, a(2) = 2.
Original entry on oeis.org
1, 1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, 5741, 13860, 33461, 80782, 195025, 470832, 1136689, 2744210, 6625109, 15994428, 38613965, 93222358, 225058681, 543339720, 1311738121, 3166815962, 7645370045, 18457556052, 44560482149, 107578520350, 259717522849
Offset: 0
G.f. = 1 + x + 2*x^2 + 5*x^3 + 12*x^4 + 29*x^5 + 70*x^6 + 169*x^7 + 408*x^8 + 985*x^9 + ...
- Karl V. Keller, Jr., Table of n, a(n) for n = 0..500
- Phan Thuan Do, Thi Thu Huong Tran, and Vincent Vajnovszki, Exhaustive generation for permutations avoiding a (colored) regular sets of patterns, arXiv:1809.00742 [cs.DM], 2018.
- E. S. Egge and T. Mansour, 132-avoiding Two-stack Sortable Permutations, Fibonacci Numbers, and Pell Numbers, arXiv:math/0205206 [math.CO], 2002.
- Index entries for linear recurrences with constant coefficients, signature (2,1).
-
[1] cat [ n le 2 select (n) else 2*Self(n-1)+Self(n-2): n in [1..35] ]; // Vincenzo Librandi, May 14 2015
-
f:= gfun:-rectoproc({a(n)=2*a(n-1)+a(n-2), a(0)=1, a(1)=1, a(2)=2}, a(n), remember):
map(f, [$0..100]); # Robert Israel, May 29 2015
-
CoefficientList[Series[(1 - x - x^2)/(1 - 2 x - x^2), {x, 0, 30}], x] (* Vincenzo Librandi, May 14 2015 *)
-
{a(n) = if( n<0, 0, polcoeff( 1 / (1 - x / (1 - x / (1 - x / (1 + x)))) + x * O(x^n), n))};
A052991
Expansion of (1-x-x^2)/(1-3x-x^2).
Original entry on oeis.org
1, 2, 6, 20, 66, 218, 720, 2378, 7854, 25940, 85674, 282962, 934560, 3086642, 10194486, 33670100, 111204786, 367284458, 1213058160, 4006458938, 13232434974, 43703763860, 144343726554, 476734943522, 1574548557120, 5200380614882, 17175690401766, 56727451820180
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
spec := [S,{S=Sequence(Prod(Sequence(Union(Prod(Z,Z),Z)),Union(Z,Z)))},unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
-
CoefficientList[Series[(1-x-x^2)/(1-3x-x^2),{x,0,30}],x] (* or *) LinearRecurrence[{3,1},{1,2,6},30] (* Harvey P. Dale, May 10 2022 *)
A155179
a(n) = 4*a(n-1)+a(n-2), n>2; a(0)=1, a(1)=3, a(2)=12.
Original entry on oeis.org
1, 3, 12, 51, 216, 915, 3876, 16419, 69552, 294627, 1248060, 5286867, 22395528, 94868979, 401871444, 1702354755, 7211290464, 30547516611, 129401356908, 548152944243, 2322013133880, 9836205479763, 41666835052932, 176503545691491, 747681017818896, 3167227616967075
Offset: 0
-
f[n_]:=Fibonacci[n]; lst={};Do[a=f[n]*(3/2);If[IntegerQ[a],AppendTo[lst,a]],{n,0,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Oct 25 2009 *)
-
Vec((1-x-x^2)/((1-4*x-x^2)+O(x^99))) \\ Charles R Greathouse IV, Dec 09 2014
-
concat(1,select(n->denominator(n)==1,[fibonacci(n)*3/2|n<-[1..50]])) \\ Charles R Greathouse IV, Dec 09 2014
A155181
a(n)=5*a(n-1)+a(n-2), n>2 ; a(0)=1, a(1)=4, a(2)=20 .
Original entry on oeis.org
1, 4, 20, 104, 540, 2804, 14560, 75604, 392580, 2038504, 10585100, 54964004, 285405120, 1481989604, 7695353140, 39958755304, 207489129660, 1077404403604, 5594511147680, 29049960142004, 150844311857700, 783271519430504
Offset: 0
-
LinearRecurrence[{5, 1}, {1, 4, 20}, 25] (* Paolo Xausa, Jan 19 2024 *)
A155195
a(n)=6*a(n-1)+a(n-2), n>2 ; a(0)=1, a(1)=5, a(2)=30 .
Original entry on oeis.org
1, 5, 30, 185, 1140, 7025, 43290, 266765, 1643880, 10130045, 62424150, 384674945, 2370473820, 14607517865, 90015581010, 554701003925, 3418221604560, 21064030631285, 129802405392270, 799878462984905, 4929073183301700
Offset: 0
-
LinearRecurrence[{6, 1}, {1, 5, 30}, 25] (* Paolo Xausa, Jan 19 2024 *)
Showing 1-10 of 14 results.
Comments