cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A049660 a(n) = Fibonacci(6*n)/8.

Original entry on oeis.org

0, 1, 18, 323, 5796, 104005, 1866294, 33489287, 600940872, 10783446409, 193501094490, 3472236254411, 62306751484908, 1118049290473933, 20062580477045886, 360008399296352015, 6460088606857290384, 115921586524134874897, 2080128468827570457762
Offset: 0

Views

Author

Keywords

Comments

For n >= 2, a(n) equals the permanent of the (n-1) X (n-1) tridiagonal matrix with 18's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
For n >= 2, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,17}. - Milan Janjic, Jan 25 2015
10*a(n)^2 = Tri(4)*S(n-1, 18)^2 is the triangular number Tri((T(n, 9) - 1)/2), with Tri, S and T given in A000217, A049310 and A053120. This is instance k = 4 of the k-family of identities given in a comment on A001109. - Wolfdieter Lang, Feb 01 2016
Possible solutions for y in Pell equation x^2 - 80*y^2 = 1. The values for x are given in A023039. - Herbert Kociemba, Jun 05 2022

Examples

			a(3) = F(6 * 3) / 8 = F(18) / 8 = 2584 / 8 = 323. - _Indranil Ghosh_, Feb 06 2017
		

Crossrefs

Column m=6 of array A028412.
Partial sums of A007805.

Programs

Formula

G.f.: x/(1 - 18*x + x^2).
a(n) = A134492(n)/8.
a(n) ~ (1/40)*sqrt(5)*(sqrt(5) + 2)^(2*n). - Joe Keane (jgk(AT)jgk.org), May 15 2002
For all terms k of the sequence, 80*k^2 + 1 is a square. Limit_{n->oo} a(n)/a(n-1) = 8*phi + 5 = 9 + 4*sqrt(5). - Gregory V. Richardson, Oct 14 2002
a(n) = S(n-1, 18) with S(n, x) := U(n, x/2), Chebyshev's polynomials of the second kind. S(-1, x) := 0. See A049310.
a(n) = (((9 + 4*sqrt(5))^n - (9 - 4*sqrt(5))^n))/(8*sqrt(5)).
a(n) = sqrt((A023039(n)^2 - 1)/80) (cf. Richardson comment).
a(n) = 18*a(n-1) - a(n-2). - Gregory V. Richardson, Oct 14 2002
a(n) = A001076(2n)/4.
a(n) = 17*(a(n-1) + a(n-2)) - a(n-3) = 19*(a(n-1) - a(n-2)) + a(n-3). - Mohamed Bouhamida, May 26 2007
a(n+1) = Sum_{k=0..n} A101950(n,k)*17^k. - Philippe Deléham, Feb 10 2012
Product_{n>=1} (1 + 1/a(n)) = (1/2)*(2 + sqrt(5)). - Peter Bala, Dec 23 2012
Product_{n>=2} (1 - 1/a(n)) = (2/9)*(2 + sqrt(5)). - Peter Bala, Dec 23 2012
a(n) = (1/32)*(F(6*n + 3) - F(6*n - 3)).
Sum_{n>=1} 1/(4*a(n) + 1/(4*a(n))) = 1/4. Compare with A001906 and A049670. - Peter Bala, Nov 29 2013
From Peter Bala, Apr 02 2015: (Start)
Sum_{n >= 1} a(n)*x^(2*n) = -G(x)*G(-x), where G(x) = Sum_{n >= 1} A001076(n)*x^n.
1 + 4*Sum_{n >= 1} a(n)*x^(2*n) = (1 + F(x))*(1 + F(-x)) = (1 + 2*x*G(x))*(1 - 2*x*G(-x)), where F(x) = Sum_{n >= 1} Fibonacci(3*n + 3)*x^n.
1 + 7*Sum_{n >= 1} a(n)*x^(2*n) = (1 + G(x))*(1 + G(-x)) = (1 + 7*G(x))*(1 + 7*G(-x)).
1 + 12*Sum_{n >= 1} a(n)*x^(2*n) = (1 + 2*G(x))*(1 + 2*G(-x)) = (1 + 6*G(x))*(1 + 6*G(-x)) = (1 + A(x))*(1 + A(-x)), where A(x) = Sum_{n >= 1} Fibonacci(3*n)*x^n is the o.g.f for A014445.
1 + 15*Sum_{n >= 1} a(n)*x^(2*n) = (1 + 5*G(x))*(1 + 5*G(-x)) = (1 + 3*G(x))*(1 + 3*G(-x)) = H(x)*H(-x), where H(x) = Sum_{n >= 0} A155179(n)*x^n.
1 + 16*Sum_{n >= 1} a(n)*x^(2*n) = (1 + 4*G(x))*(1 + 4*G(-x)) = (1 + 2* Sum_{n >= 1} Fibonacci(3*n - 1)*x^n)*(1 + 2* Sum_{n >= 1} Fibonacci(3*n - 1)*(-x)^n) = (1 + 2* Sum_{n >= 1} Fibonacci(3*n + 1)*x^n)*(1 + 2* Sum_{n >= 1} Fibonacci(3*n + 1)*(-x)^n).
1 + 20*Sum_{n >= 1} a(n)*x^(2*n) = (1 + Sum_{n >= 1} Lucas(3*n)*x^n)*(1 + Sum_{n >= 1} Lucas(3*n)*(-x)^n).
1 - 5*Sum_{n >= 1} a(n)*x^(2*n) = (1 + Sum_{n >= 1} A001077(n+1)*x^n)*(1 + Sum_{n >= 1} A001077(n+1)*(-x)^n).
1 - 9*Sum_{n >= 1} a(n)*x^(2*n) = (1 - G(x))*(1 - G(-x)) = (1 + 9*G(x))*(1 + 9*G(-x)).
1 - 16*Sum_{n >= 1} a(n)*x^(2*n) = (1 + 2*Sum_{n >= 1} A099843(n)*x^n)*(1 + 2*Sum_{n >= 1} A099843(n)*(-x)^n).
1 - 20*Sum_{n >= 1} a(n)*x^(2*n) = (1 - 2*G(x))*(1 - 2*G(-x)) = (1 + 10*G(x))*(1 + 10*G(-x)).
(End)

Extensions

Chebyshev and other comments from Wolfdieter Lang, Nov 08 2002

A155161 A Fibonacci convolution triangle: Riordan array (1, x/(1 - x - x^2)). Triangle T(n,k), 0 <= k <= n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 3, 5, 3, 1, 0, 5, 10, 9, 4, 1, 0, 8, 20, 22, 14, 5, 1, 0, 13, 38, 51, 40, 20, 6, 1, 0, 21, 71, 111, 105, 65, 27, 7, 1, 0, 34, 130, 233, 256, 190, 98, 35, 8, 1, 0, 55, 235, 474, 594, 511, 315, 140, 44, 9, 1, 0, 89, 420, 942, 1324, 1295, 924, 490, 192, 54, 10, 1
Offset: 0

Views

Author

Philippe Deléham, Jan 21 2009

Keywords

Examples

			Triangle begins:
[0] 1;
[1] 0,  1;
[2] 0,  1,   1;
[3] 0,  2,   2,   1;
[4] 0,  3,   5,   3,   1;
[5] 0,  5,  10,   9,   4,   1;
[6] 0,  8,  20,  22,  14,   5,  1;
[7] 0, 13,  38,  51,  40,  20,  6,  1;
[8] 0, 21,  71, 111, 105,  65, 27,  7, 1;
[9] 0, 34, 130, 233, 256, 190, 98, 35, 8, 1.
		

Crossrefs

Row sums are in A215928.
Central terms: T(2*n,n) = A213684(n) for n > 0.

Programs

  • Haskell
    a155161 n k = a155161_tabl !! n !! k
    a155161_row n = a155161_tabl !! n
    a155161_tabl = [1] : [0,1] : f [0] [0,1] where
       f us vs = ws : f vs ws where
         ws = zipWith (+) (us ++ [0,0]) $ zipWith (+) ([0] ++ vs) (vs ++ [0])
    -- Reinhard Zumkeller, Apr 17 2013
  • Maple
    T := (n, k) -> binomial(n-1, k-1)*hypergeom([-(n-k)/2, -(n-k-1)/2], [1-n], -4):
    seq(seq(simplify(T(n, k)), k = 0..n), n = 0..11); # Peter Luschny, May 23 2021
    # Uses function PMatrix from A357368.
    PMatrix(10, n -> combinat:-fibonacci(n)); # Peter Luschny, Oct 07 2022
  • Mathematica
    CoefficientList[#, y]& /@ CoefficientList[(1-x-x^2)/(1-x-x^2-x*y)+O[x]^12, x] // Flatten (* Jean-François Alcover, Mar 01 2019 *)
    (* Generates the triangle without the leading '1' (rows are rearranged). *)
    (* Function RiordanSquare defined in A321620. *)
    RiordanSquare[x/(1 - x - x^2), 11] // Flatten  (* Peter Luschny, Feb 27 2021 *)
  • Maxima
    M(n,k):=pochhammer(n,k)/k!;
    create_list(sum(M(k,i)*binomial(i,n-i-k),i,0,n-k),n,0,8,k,0,n); /* Emanuele Munarini, Mar 15 2011 */
    

Formula

T(n, k) given by [0,1,1,-1,0,0,0,...] DELTA [1,0,0,0,...] where DELTA is the operator defined in A084938.
a(n,k) = Sum_{i=0..n-k} M(k,i)*binomial(i,n-i-k), where M(n,k) = n(n+1)(n+2)...(n+k-1)/k!. - Emanuele Munarini, Mar 15 2011
Recurrence: a(n+2,k+1) = a(n+1,k+1) + a(n+1,k) + a(n,k+1). - Emanuele Munarini, Mar 15 2011
G.f.: (1-x-x^2)/(1-x-x^2-x*y). - Philippe Deléham, Feb 08 2012
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A000129(n) (n > 0), A052991(n), A155179(n), A155181(n), A155195(n), A155196(n), A155197(n), A155198(n), A155199(n) for x = 0,1,2,3,4,5,6,7,8,9 respectively. - Philippe Deléham, Feb 08 2012
T(n, k) = binomial(n-1, k-1)*hypergeom([-(n-k)/2, -(n-k-1)/2], [1-n], -4). - Peter Luschny, May 23 2021
Showing 1-2 of 2 results.