cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A001002 Number of dissections of a convex (n+2)-gon into triangles and quadrilaterals by nonintersecting diagonals.

Original entry on oeis.org

1, 1, 3, 10, 38, 154, 654, 2871, 12925, 59345, 276835, 1308320, 6250832, 30142360, 146510216, 717061938, 3530808798, 17478955570, 86941210950, 434299921440, 2177832612120, 10959042823020, 55322023332420, 280080119609550, 1421744205767418, 7234759677699954
Offset: 0

Views

Author

Keywords

Comments

a(n+1) is number of (2,3)-rooted trees on n nodes.
This sequence appears to be a transform of the Fibonacci numbers A000045. This sequence is to the Fibonacci numbers as the Catalan numbers A000108 is to the all ones sequence. See link to Mathematica program. - Mats Granvik, Dec 30 2017
a(n) is the number of parking functions of size n avoiding the patterns 231, 312, and 321. - Lara Pudwell, Apr 10 2023

Examples

			a(3)=10 because a convex pentagon can be dissected in 5 ways into triangles (draw 2 diagonals from any of the 5 vertices) and in 5 ways into a triangle and a quadrilateral (draw any of the 5 diagonals).
		

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 211 (3.2.73-74)
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

n*a(n) = A038112(n-1), n > 0.

Programs

  • GAP
    List([0..25], n->Sum([0..Int(n/2)],k->Binomial(2*n-k,n+k)*Binomial(n+k,k)/(n+1))); # Muniru A Asiru, Mar 30 2018
  • Maple
    a:= proc(n) option remember; `if`(n<2, 1, (n*(22*n-11)*
          a(n-1) + (9*n-6)*(3*n-4)*a(n-2))/(5*n*(n+1)))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Jan 21 2021
  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[y - y^2 - y^3, {y, 0, 30}], x], x]]
    a[n_] := CatalanNumber[n]*Hypergeometric2F1[1/2-n/2, -n/2, -2n, -4]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jan 20 2015, after Peter Luschny *)
    a[n_] := a[n] = If[n == 0, 1, Sum[a[i] a[n - 1 - i], {i, 0, n - 1}] + Sum[a[i] a[j] a[n - 2 - i - j], {i, 0, n - 2}, {j, 0, n - 2 - i}]];
    Table[a[n], {n, 0, 30}] (* Li Han, Jan 02 2021 *)
  • Maxima
    T(n,k):=if n<0 or k<0 then 0 else if nVladimir Kruchinin, Oct 03 2014 */
    
  • PARI
    a(n)=if(n<0,0,polcoeff(serreverse(x-x^2-x^3+x^2*O(x^n)),n+1))
    
  • PARI
    a(n)=if(n<0,0,sum(k=0,n\2,(2*n-k)!/k!/(n-2*k)!)/(n+1)!)
    
  • PARI
    a(n)=sum(k=0,n\2,binomial(2*n-k,n+k)*binomial(n+k,k))/(n+1) \\ Hanna
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=1); A=1+(1/x)*sum(m=1, n+1, Dx(m-1, (x^2+x^3 +x^2*O(x^n))^m/m!)); polcoeff(A, n)}  \\ Paul D. Hanna, Jun 22 2012
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=1); A=exp(sum(m=1, n+1, Dx(m-1, (x^2+x^3 +x^2*O(x^n))^m/x/m!)+x*O(x^n))); polcoeff(A, n)}  \\ Paul D. Hanna, Jun 22 2012
    
  • Sage
    A001002 = lambda n: catalan_number(n)*hypergeometric([1/2-n/2, -n/2], [-2*n], -4) if n>0 else 1
    [A001002(n).n(100).round() for n in range(24)] # Peter Luschny, Oct 03 2014
    

Formula

G.f. (offset 1) is series reversion of x - x^2 - x^3.
a(n) = (1/(n+1))*Sum_{k=ceiling(n/2)..n} binomial(n+k, k)*binomial(k, n-k). - Len Smiley
D-finite with recurrence 5*n*(n+1) * a(n) = 11*n*(2*n-1) * a(n-1) + 3*(3*n-2)*(3*n-4) * a(n-2). - Len Smiley
G.f.: (4*sin(asin((27*x+11)/16)/3)-1)/(3*x). - Paul Barry, Feb 02 2005
G.f. satisfies: A(x) = 1 + x*A(x)^2 + x^2*A(x)^3. - Paul D. Hanna, Jun 22 2012
Antidiagonal sums of triangle A104978 which has g.f. F(x,y) that satisfies: F = 1 + x*F^2 + x*y*F^3. - Paul D. Hanna, Mar 30 2005
a(n) = Sum_{k=0..floor(n/2)} C(2*n-k, n+k)*C(n+k, k)/(n+1). - Paul D. Hanna, Mar 30 2005
G.f. satisfies: x = Sum_{n>=1} 1/(1+x*A(x))^(2*n) * Product_{k=1..n} (1 - 1/(1+x*A(x))^k). - Paul D. Hanna, Apr 05 2012
G.f.: 1 + (1/x)*Sum_{n>=1} d^(n-1)/dx^(n-1) (x^2+x^3)^n/n!. - Paul D. Hanna, Jun 22 2012
G.f.: exp( Sum_{n>=1} d^(n-1)/dx^(n-1) ((x^2+x^3)^n/x)/n! ). - Paul D. Hanna, Jun 22 2012
Logarithmic derivative yields A213684. - Paul D. Hanna, Jun 22 2012
a(n) ~ 3^(3*n+3/2) / (2 * sqrt(2*Pi) * 5^(n+1/2) * n^(3/2)). - Vaclav Kotesovec, Mar 09 2014
a(n) = Catalan(n)*hypergeom([1/2-n/2, -n/2], [-2*n], -4) for n>0. - Peter Luschny, Oct 03 2014
a(n) = [x^n] 1/(1 - x - x^2)^(n+1)/(n + 1). - Ilya Gutkovskiy, Mar 29 2018
a(n) = -Sum_{i=1..n} A217596(i) * a(n-i) for n>0. - Muhammed Sefa Saydam, Jan 27 2025
a(n) = -Sum_{i=1..n+2} A217596(i) * A217596(n-i+2) for n >= 0. - Muhammed Sefa Saydam, Jul 24 2025

Extensions

Revised by Emeric Deutsch and Len Smiley, Jun 05 2005

A155161 A Fibonacci convolution triangle: Riordan array (1, x/(1 - x - x^2)). Triangle T(n,k), 0 <= k <= n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 3, 5, 3, 1, 0, 5, 10, 9, 4, 1, 0, 8, 20, 22, 14, 5, 1, 0, 13, 38, 51, 40, 20, 6, 1, 0, 21, 71, 111, 105, 65, 27, 7, 1, 0, 34, 130, 233, 256, 190, 98, 35, 8, 1, 0, 55, 235, 474, 594, 511, 315, 140, 44, 9, 1, 0, 89, 420, 942, 1324, 1295, 924, 490, 192, 54, 10, 1
Offset: 0

Views

Author

Philippe Deléham, Jan 21 2009

Keywords

Examples

			Triangle begins:
[0] 1;
[1] 0,  1;
[2] 0,  1,   1;
[3] 0,  2,   2,   1;
[4] 0,  3,   5,   3,   1;
[5] 0,  5,  10,   9,   4,   1;
[6] 0,  8,  20,  22,  14,   5,  1;
[7] 0, 13,  38,  51,  40,  20,  6,  1;
[8] 0, 21,  71, 111, 105,  65, 27,  7, 1;
[9] 0, 34, 130, 233, 256, 190, 98, 35, 8, 1.
		

Crossrefs

Row sums are in A215928.
Central terms: T(2*n,n) = A213684(n) for n > 0.

Programs

  • Haskell
    a155161 n k = a155161_tabl !! n !! k
    a155161_row n = a155161_tabl !! n
    a155161_tabl = [1] : [0,1] : f [0] [0,1] where
       f us vs = ws : f vs ws where
         ws = zipWith (+) (us ++ [0,0]) $ zipWith (+) ([0] ++ vs) (vs ++ [0])
    -- Reinhard Zumkeller, Apr 17 2013
  • Maple
    T := (n, k) -> binomial(n-1, k-1)*hypergeom([-(n-k)/2, -(n-k-1)/2], [1-n], -4):
    seq(seq(simplify(T(n, k)), k = 0..n), n = 0..11); # Peter Luschny, May 23 2021
    # Uses function PMatrix from A357368.
    PMatrix(10, n -> combinat:-fibonacci(n)); # Peter Luschny, Oct 07 2022
  • Mathematica
    CoefficientList[#, y]& /@ CoefficientList[(1-x-x^2)/(1-x-x^2-x*y)+O[x]^12, x] // Flatten (* Jean-François Alcover, Mar 01 2019 *)
    (* Generates the triangle without the leading '1' (rows are rearranged). *)
    (* Function RiordanSquare defined in A321620. *)
    RiordanSquare[x/(1 - x - x^2), 11] // Flatten  (* Peter Luschny, Feb 27 2021 *)
  • Maxima
    M(n,k):=pochhammer(n,k)/k!;
    create_list(sum(M(k,i)*binomial(i,n-i-k),i,0,n-k),n,0,8,k,0,n); /* Emanuele Munarini, Mar 15 2011 */
    

Formula

T(n, k) given by [0,1,1,-1,0,0,0,...] DELTA [1,0,0,0,...] where DELTA is the operator defined in A084938.
a(n,k) = Sum_{i=0..n-k} M(k,i)*binomial(i,n-i-k), where M(n,k) = n(n+1)(n+2)...(n+k-1)/k!. - Emanuele Munarini, Mar 15 2011
Recurrence: a(n+2,k+1) = a(n+1,k+1) + a(n+1,k) + a(n,k+1). - Emanuele Munarini, Mar 15 2011
G.f.: (1-x-x^2)/(1-x-x^2-x*y). - Philippe Deléham, Feb 08 2012
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A000129(n) (n > 0), A052991(n), A155179(n), A155181(n), A155195(n), A155196(n), A155197(n), A155198(n), A155199(n) for x = 0,1,2,3,4,5,6,7,8,9 respectively. - Philippe Deléham, Feb 08 2012
T(n, k) = binomial(n-1, k-1)*hypergeom([-(n-k)/2, -(n-k-1)/2], [1-n], -4). - Peter Luschny, May 23 2021

A350383 a(n) = [x^n] 1/(1 + x + x^2)^n.

Original entry on oeis.org

1, -1, 1, 2, -15, 49, -98, 48, 561, -2860, 8151, -12948, -9282, 149226, -594320, 1428952, -1448655, -5538975, 37450900, -122995950, 239589735, -37528755, -1886983020, 8939152560, -24579514050, 35197176924, 51580335366, -541312482256, 2033695030128, -4624358661240
Offset: 0

Views

Author

Seiichi Manyama, Dec 29 2021

Keywords

Crossrefs

Programs

  • Maple
    a := n -> (-1)^n*hypergeom([-n/3, 1/3 - n/3, 2/3 - n/3, n], [1/3, 2/3, 1], 1): seq(simplify(a(n)), n = 0..30); # Peter Bala, Apr 17 2023
  • Mathematica
    a[n_] := Coefficient[Series[1/(1 + x + x^2)^n, {x, 0, n}], x, n]; Array[a, 30, 0] (* Amiram Eldar, Dec 29 2021 *)
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n-1+k, k)*binomial(n, 3*k));

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n-1+k,k) * binomial(n,3*k).
Recurrence: 3*(n-1)*n*(4*n - 7)*a(n) = -2*(n-1)*(28*n^2 - 63*n + 27)*a(n-1) - 3*(3*n - 5)*(3*n - 4)*(4*n - 3)*a(n-2). - Vaclav Kotesovec, Mar 18 2023
From Peter Bala, Apr 15 2023: (Start)
a(n) = (-1)^n*hypergeom([-n/3, 1/3 - n/3, 2/3 - n/3, n], [1/3, 2/3, 1], 1).
Conjecture: the supercongruence a(n*p^r) == a(n*p^(r-1)) (mod p^(2*r)) holds for positive integers n and r and all primes p >= 5. Cf. A228960.
More generally, let k be a positive integer, m an integer and let f(x) = g(x)/h(x), where g(x) and h(x) are both finite products of cyclotomic polynomials. Then we conjecture that the same supercongruences hold, except for a finite number of primes p depending on f(x), for the sequence {a_(k,m,f)(n): n >= 0} defined by a_(k,m,f)(n) = [x^(k*n)] f(x)^(m*n). (End)
From Peter Bala, Mar 11 2025: (Start)
G.f.: A(x) = 1 + x*d/dx(log(G(x)/x)), where G(x) = x - x^2 + x^3 - 4*x^5 + 14*x^6 - 30*x^7 + ... is the g.f. of A103779.
The following formulas hold for n >= 1:
a(n) = [x^n] T(2*n, (1 - x)/2), where T(n, x) denotes the n-th Chebyshev polynomial of the first kind.
a(n) = Sum_{k = 0..n} (-1)^(n+k) * n/(2*n-k) * binomial(2*n-k, k)*binomial(2*n-2*k, n).
a(n) = (1/2)*(-1)^n*binomial(2*n, n)*hypergeom([-n/2, (-n+1)/2], [-2*n+1], 4). Cf. A213684. (End)

A362078 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = [x^n] 1/(1 - x*(1+x)^k)^n.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 5, 10, 1, 1, 7, 22, 35, 1, 1, 9, 37, 105, 126, 1, 1, 11, 55, 215, 511, 462, 1, 1, 13, 76, 369, 1271, 2534, 1716, 1, 1, 15, 100, 571, 2526, 7651, 12720, 6435, 1, 1, 17, 127, 825, 4401, 17577, 46614, 64449, 24310, 1, 1, 19, 157, 1135, 7026, 34412, 123810, 286599, 328900, 92378
Offset: 0

Views

Author

Seiichi Manyama, Apr 08 2023

Keywords

Examples

			Square array begins:
    1,   1,    1,    1,    1,    1, ...
    1,   1,    1,    1,    1,    1, ...
    3,   5,    7,    9,   11,   13, ...
   10,  22,   37,   55,   76,  100, ...
   35, 105,  215,  369,  571,  825, ...
  126, 511, 1271, 2526, 4401, 7026, ...
		

Crossrefs

Columns k=0..3 give A088218, A213684, A362087, A362088.
Main diagonal gives A362080.
Cf. A362079.

Programs

  • PARI
    T(n, k) = sum(j=0, n, binomial(n+j-1, j)*binomial(k*j, n-j));

Formula

T(n,k) = Sum_{j=0..n} (-1)^j * binomial(-n,j) * binomial(k*j,n-j) = Sum_{j=0..n} binomial(n+j-1,j) * binomial(k*j,n-j).

A372233 Coefficient of x^n in the expansion of 1 / ( (1-x) * (1-x-x^2) )^n.

Original entry on oeis.org

1, 2, 12, 77, 520, 3612, 25557, 183192, 1325808, 9666635, 70897112, 522472392, 3865669717, 28697325048, 213649228560, 1594540806612, 11926354293792, 89372808145692, 670865679851667, 5043360211505000, 37965778448487120, 286151354441445570, 2159143860124095120
Offset: 0

Views

Author

Seiichi Manyama, May 02 2024

Keywords

Crossrefs

Programs

  • Maple
    A372233 := proc(n)
        add(binomial(n+k-1,k) * binomial(3*n-k-1,n-2*k),k=0..floor(n/2));
    end proc:
    seq(A372233(n),n=0..50) ; # R. J. Mathar, May 02 2024
  • Mathematica
    Table[SeriesCoefficient[1/((1-x)*(1-x-x^2))^n, {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, May 04 2024 *)
  • PARI
    a(n, s=2, t=1, u=1) = sum(k=0, n\s, binomial(t*n+k-1, k)*binomial((t+u+1)*n-(s-1)*k-1, n-s*k));

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(n+k-1,k) * binomial(3*n-k-1,n-2*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-x) * (1-x-x^2) ).
D-finite with recurrence +575*n*(n-1)*(n-2)*a(n) +40*(n-1)*(n-2)*(125*n-178)*a(n-1) -16*(n-2)*(3272*n^2-5536*n+75)*a(n-2) +8*(-22112*n^3+169392*n^2-450082*n+415827)*a(n-3) +1344*(96*n^3-1328*n^2+5794*n-8139)*a(n-4) +3072*(4*n-15)*(2*n-9)*(4*n-17)*a(n-5)=0. - R. J. Mathar, May 02 2024
a(n) ~ sqrt((1/8 + cos(arccos(sqrt(37)/8)/3)/sqrt(37))/(Pi*n)) / (-2/3 + sqrt(35/18)*cos(arccos(-4537/(560*sqrt(70)))/3))^n. - Vaclav Kotesovec, May 04 2024

A370616 Coefficient of x^n in the expansion of ( (1-x) / (1-x-x^2) )^n.

Original entry on oeis.org

1, 0, 2, 3, 14, 35, 125, 371, 1238, 3909, 12847, 41580, 136577, 447187, 1473341, 4855703, 16053830, 53138243, 176233967, 585202261, 1945964079, 6478043120, 21588979876, 72016891508, 240452892569, 803489258285, 2686964354375, 8991840800136, 30110638705889
Offset: 0

Views

Author

Seiichi Manyama, Apr 30 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[-1 - k + n, -2*k + n] Binomial[-1 + k + n, k], {k, 0, n/2}], {n, 0, 30}] (* Vaclav Kotesovec, Jul 30 2025 *)
  • PARI
    a(n, s=2, t=1, u=1) = sum(k=0, n\s, binomial(t*n+k-1, k)*binomial((t-u+1)*n-(s-1)*k-1, n-s*k));

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(n+k-1,k) * binomial(n-k-1,n-2*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-x-x^2) / (1-x) ).
From Peter Bala, 26 Jul 2025: (Start)
a(n) = n * hypergeom([1 + n, 1 - n/2, 3/2 - n/2], [2, 2 - n], -4) for n >= 3.
P-recursive: 5*n*(74*n^3-493*n^2+1075*n-766)*(n-1)*a(n) = 2*(n-1)*(296*n^4-2120*n^3+5393*n^2-5716*n+2100)*a(n-1) + 2*(1184*n^5-10256*n^4+34088*n^3-53995*n^2+40397*n-11250)*a(n-2) - 2*(n-3)*(2*n-5)*(74*n^3-271*n^2+311*n-110)*a(n-3) with a(0) = 1, a(1) = 0 and a(2) = 2.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and all positive integers n and k. (End)
a(n) ~ sqrt(1/12 + sqrt(10/37)*(sin(arcsin((13*sqrt(37/10))/40)/3)/3)) * (8*((1 + sqrt(34)*cos(arccos(2461/(1088*sqrt(34)))/3))/15))^n / sqrt(Pi*n). - Vaclav Kotesovec, Jul 30 2025

A378554 a(n) = Sum_{k=0..n} 4^(n-k) * binomial(n+k-1,k) * binomial(k/2,n-k).

Original entry on oeis.org

1, 1, 7, 28, 171, 846, 4942, 26580, 153363, 856900, 4939682, 28140476, 162676878, 936947116, 5436375532, 31526252208, 183571246659, 1069552636950, 6247183319938, 36524006501180, 213899020967786, 1253905101529080, 7359775341696180, 43237184121401400
Offset: 0

Views

Author

Seiichi Manyama, Nov 30 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=SeriesCoefficient[1/(1 - x*(1 + 4*x)^(1/2))^n,{x,0,n}]; Array[a,24,0] (* Stefano Spezia, Nov 30 2024 *)
  • PARI
    a(n) = sum(k=0, n, 4^(n-k)*binomial(n+k-1, k)*binomial(k/2, n-k));

Formula

a(n) = [x^n] 1/(1 - x*(1 + 4*x)^(1/2))^n.

A378555 a(n) = Sum_{k=0..n} 9^(n-k) * binomial(n+k-1,k) * binomial(k/3,n-k).

Original entry on oeis.org

1, 1, 9, 19, 305, 156, 13233, -23988, 688113, -2863070, 41085704, -246536784, 2696513885, -19410931916, 187672944300, -1481383572516, 13522625165601, -111877103550195, 994511499413664, -8430550720540365, 74061353032540020, -636000265949289978
Offset: 0

Views

Author

Seiichi Manyama, Nov 30 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=SeriesCoefficient[1/(1 - x*(1 + 9*x)^(1/3))^n,{x,0,n}]; Array[a,22,0] (* Stefano Spezia, Nov 30 2024 *)
  • PARI
    a(n) = sum(k=0, n, 9^(n-k)*binomial(n+k-1, k)*binomial(k/3, n-k));

Formula

a(n) = [x^n] 1/(1 - x*(1 + 9*x)^(1/3))^n.

A298610 Triangle read by rows, the unsigned coefficients of G(n, n, x/2) where G(n,a,x) denotes the n-th Gegenbauer polynomial, T(n, k) for 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 2, 0, 3, 0, 12, 0, 10, 10, 0, 60, 0, 35, 0, 105, 0, 280, 0, 126, 56, 0, 756, 0, 1260, 0, 462, 0, 840, 0, 4620, 0, 5544, 0, 1716, 330, 0, 7920, 0, 25740, 0, 24024, 0, 6435, 0, 6435, 0, 60060, 0, 135135, 0, 102960, 0, 24310
Offset: 0

Views

Author

Peter Luschny, Jan 25 2018

Keywords

Examples

			[0]   1
[1]   0,    1
[2]   2,    0,    3
[3]   0,   12,    0,    10
[4]  10,    0,   60,     0,    35
[5]   0,  105,    0,   280,     0,    126
[6]  56,    0,  756,     0,  1260,      0,   462
[7]   0,  840,    0,  4620,     0,   5544,     0,   1716
[8] 330,    0, 7920,     0, 25740,      0, 24024,      0, 6435
[9]   0, 6435,    0, 60060,     0, 135135,     0, 102960,    0,  24310
		

Crossrefs

T(2n, 0) = A165817(n). T(n,n) = A088218(n). Row sums are A213684.
Cf. A109187.

Programs

  • Maple
    with(orthopoly):
    seq(seq((-1)^iquo(n-k, 2)*coeff(G(n,n,x/2),x,k), k=0..n), n=0..9);
  • Mathematica
    p[n_] := Binomial[3 n - 1, n] Hypergeometric2F1[-n, 3 n, n + 1/2, 1/2 - x/4];
    Flatten[Table[(-1)^Floor[(n-k)/2] Coefficient[p[n], x, k], {n,0,9}, {k,0,n}]]

Formula

G(n, x) = binomial(3*n-1, n)*hypergeom([-n, 3*n], [n+1/2], 1/2 - x/4).

A341266 a(n) is the n-th term of the n-fold self-convolution of the twice left-shifted tribonacci sequence (A000073).

Original entry on oeis.org

1, 1, 5, 25, 125, 646, 3395, 18054, 96885, 523600, 2845700, 15537457, 85160387, 468279280, 2582140370, 14272523740, 79056303957, 438711518556, 2438587839980, 13574970187300, 75668677723100, 422294150816010, 2359326605275755, 13194525668986350, 73857744668632275
Offset: 0

Views

Author

Alois P. Heinz, Feb 07 2021

Keywords

Comments

The twice left-shifted tribonacci sequence begins: 1, 1, 2, 4, 7, 13, 24, ... .

Crossrefs

Programs

  • Maple
    a:= n-> coeff(series((1/(1-x-x^2-x^3))^n, x, n+1), x, n):
    seq(a(n), n=0..25);
    # second Maple program:
    g:= proc(n) g(n):= `if`(n<2, (n+1)*(2-n)/2, add(g(n-j), j=1..3)) end:
    b:= proc(n, k) option remember; `if`(k<2, g(n),
          (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..25);

Formula

a(n) = [x^n] (1/(1-x-x^2-x^3))^n.
Showing 1-10 of 11 results. Next