A155161
A Fibonacci convolution triangle: Riordan array (1, x/(1 - x - x^2)). Triangle T(n,k), 0 <= k <= n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 3, 5, 3, 1, 0, 5, 10, 9, 4, 1, 0, 8, 20, 22, 14, 5, 1, 0, 13, 38, 51, 40, 20, 6, 1, 0, 21, 71, 111, 105, 65, 27, 7, 1, 0, 34, 130, 233, 256, 190, 98, 35, 8, 1, 0, 55, 235, 474, 594, 511, 315, 140, 44, 9, 1, 0, 89, 420, 942, 1324, 1295, 924, 490, 192, 54, 10, 1
Offset: 0
Triangle begins:
[0] 1;
[1] 0, 1;
[2] 0, 1, 1;
[3] 0, 2, 2, 1;
[4] 0, 3, 5, 3, 1;
[5] 0, 5, 10, 9, 4, 1;
[6] 0, 8, 20, 22, 14, 5, 1;
[7] 0, 13, 38, 51, 40, 20, 6, 1;
[8] 0, 21, 71, 111, 105, 65, 27, 7, 1;
[9] 0, 34, 130, 233, 256, 190, 98, 35, 8, 1.
Central terms: T(2*n,n) =
A213684(n) for n > 0.
-
a155161 n k = a155161_tabl !! n !! k
a155161_row n = a155161_tabl !! n
a155161_tabl = [1] : [0,1] : f [0] [0,1] where
f us vs = ws : f vs ws where
ws = zipWith (+) (us ++ [0,0]) $ zipWith (+) ([0] ++ vs) (vs ++ [0])
-- Reinhard Zumkeller, Apr 17 2013
-
T := (n, k) -> binomial(n-1, k-1)*hypergeom([-(n-k)/2, -(n-k-1)/2], [1-n], -4):
seq(seq(simplify(T(n, k)), k = 0..n), n = 0..11); # Peter Luschny, May 23 2021
# Uses function PMatrix from A357368.
PMatrix(10, n -> combinat:-fibonacci(n)); # Peter Luschny, Oct 07 2022
-
CoefficientList[#, y]& /@ CoefficientList[(1-x-x^2)/(1-x-x^2-x*y)+O[x]^12, x] // Flatten (* Jean-François Alcover, Mar 01 2019 *)
(* Generates the triangle without the leading '1' (rows are rearranged). *)
(* Function RiordanSquare defined in A321620. *)
RiordanSquare[x/(1 - x - x^2), 11] // Flatten (* Peter Luschny, Feb 27 2021 *)
-
M(n,k):=pochhammer(n,k)/k!;
create_list(sum(M(k,i)*binomial(i,n-i-k),i,0,n-k),n,0,8,k,0,n); /* Emanuele Munarini, Mar 15 2011 */
A374439
Triangle read by rows: the coefficients of the Lucas-Fibonacci polynomials. T(n, k) = T(n - 1, k) + T(n - 2, k - 2) with initial values T(n, k) = k + 1 for k < 2.
Original entry on oeis.org
1, 1, 2, 1, 2, 1, 1, 2, 2, 2, 1, 2, 3, 4, 1, 1, 2, 4, 6, 3, 2, 1, 2, 5, 8, 6, 6, 1, 1, 2, 6, 10, 10, 12, 4, 2, 1, 2, 7, 12, 15, 20, 10, 8, 1, 1, 2, 8, 14, 21, 30, 20, 20, 5, 2, 1, 2, 9, 16, 28, 42, 35, 40, 15, 10, 1, 1, 2, 10, 18, 36, 56, 56, 70, 35, 30, 6, 2
Offset: 0
Triangle starts:
[ 0] [1]
[ 1] [1, 2]
[ 2] [1, 2, 1]
[ 3] [1, 2, 2, 2]
[ 4] [1, 2, 3, 4, 1]
[ 5] [1, 2, 4, 6, 3, 2]
[ 6] [1, 2, 5, 8, 6, 6, 1]
[ 7] [1, 2, 6, 10, 10, 12, 4, 2]
[ 8] [1, 2, 7, 12, 15, 20, 10, 8, 1]
[ 9] [1, 2, 8, 14, 21, 30, 20, 20, 5, 2]
[10] [1, 2, 9, 16, 28, 42, 35, 40, 15, 10, 1]
.
Table of interpolated sequences:
| n | A039834 & A000045 | A000032 | A000129 | A048654 |
| n | -P(n,-1) | P(n,1) |2^n*P(n,-1/2)|2^n*P(n,1/2)|
| | Fibonacci | Lucas | Pell | Pell* |
| 0 | -1 | 1 | 1 | 1 |
| 1 | 1 | 3 | 0 | 4 |
| 2 | 0 | 4 | 1 | 9 |
| 3 | 1 | 7 | 2 | 22 |
| 4 | 1 | 11 | 5 | 53 |
| 5 | 2 | 18 | 12 | 128 |
| 6 | 3 | 29 | 29 | 309 |
| 7 | 5 | 47 | 70 | 746 |
| 8 | 8 | 76 | 169 | 1801 |
| 9 | 13 | 123 | 408 | 4348 |
Adding and subtracting the values in a row of the table (plus halving the values obtained in this way):
A022087,
A055389,
A118658,
A052542,
A163271,
A371596,
A324969,
A212804,
A077985,
A069306,
A215928.
-
function T(n,k) // T = A374439
if k lt 0 or k gt n then return 0;
elif k le 1 then return k+1;
else return T(n-1,k) + T(n-2,k-2);
end if;
end function;
[T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 23 2025
-
A374439 := (n, k) -> ifelse(k::odd, 2, 1)*binomial(n - irem(k, 2) - iquo(k, 2), iquo(k, 2)):
# Alternative, using the function qStirling2 from A333143:
T := (n, k) -> 2^irem(k, 2)*qStirling2(n, k, -1):
seq(seq(T(n, k), k = 0..n), n = 0..10);
-
A374439[n_, k_] := (# + 1)*Binomial[n - (k + #)/2, (k - #)/2] & [Mod[k, 2]];
Table[A374439[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* Paolo Xausa, Jul 24 2024 *)
-
from functools import cache
@cache
def T(n: int, k: int) -> int:
if k > n: return 0
if k < 2: return k + 1
return T(n - 1, k) + T(n - 2, k - 2)
-
from math import comb as binomial
def T(n: int, k: int) -> int:
o = k & 1
return binomial(n - o - (k - o) // 2, (k - o) // 2) << o
-
def P(n, x):
if n < 0: return P(n, x)
return sum(T(n, k)*x**k for k in range(n + 1))
def sgn(x: int) -> int: return (x > 0) - (x < 0)
# Table of interpolated sequences
print("| n | A039834 & A000045 | A000032 | A000129 | A048654 |")
print("| n | -P(n,-1) | P(n,1) |2^n*P(n,-1/2)|2^n*P(n,1/2)|")
print("| | Fibonacci | Lucas | Pell | Pell* |")
f = "| {0:2d} | {1:9d} | {2:4d} | {3:5d} | {4:4d} |"
for n in range(10): print(f.format(n, -P(n, -1), P(n, 1), int(2**n*P(n, -1/2)), int(2**n*P(n, 1/2))))
-
from sage.combinat.q_analogues import q_stirling_number2
def A374439(n,k): return (-1)^((k+1)//2)*2^(k%2)*q_stirling_number2(n+1, k+1, -1)
print(flatten([[A374439(n, k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Jan 23 2025
A105070
T(n,k) = 2^k*binomial(n,2k+1), where 0 <= k <= floor((n-1)/2), n >= 1.
Original entry on oeis.org
1, 2, 3, 2, 4, 8, 5, 20, 4, 6, 40, 24, 7, 70, 84, 8, 8, 112, 224, 64, 9, 168, 504, 288, 16, 10, 240, 1008, 960, 160, 11, 330, 1848, 2640, 880, 32, 12, 440, 3168, 6336, 3520, 384, 13, 572, 5148, 13728, 11440, 2496, 64, 14, 728, 8008, 27456, 32032, 11648, 896, 15, 910, 12012, 51480, 80080, 43680, 6720, 128
Offset: 1
Triangle begins:
1;
2;
3, 2;
4, 8;
5, 20, 4;
6, 40, 24;
(2, -1/2, 1/2, 0, 0, ...) DELTA (0, 1, -1, 0, 0, ...) begins:
1;
2, 0;
3, 2, 0;
4, 8, 0, 0;
5, 20, 4, 0, 0;
6, 40, 24, 0, 0, 0.
(1, 1, -1, 1, 0, 0, ...) DELTA (0, 0, 2, -2, 0, 0, ...) begins:
1;
1, 0;
2, 0, 0;
3, 2, 0, 0;
4, 8, 0, 0, 0;
5, 20, 4, 0, 0, 0;
6, 40, 24, 0, 0, 0, 0. - _Philippe Deléham_, Apr 07 2012
- G. C. Greubel, Rows n = 1..100 of the triangle, flattened
- Rui Duarte and António Guedes de Oliveira, A Famous Identity of Hajós in Terms of Sets, Journal of Integer Sequences, Vol. 17 (2014), #14.9.1.
- J. Ivie, Problem B-161, Fibonacci Quarterly, 8 (1970), 107-108.
-
[2^k*Binomial(n,2*k+1): k in [0..Floor((n-1)/2)], n in [1..15]]; // G. C. Greubel, Mar 15 2020
-
T:=(n,k)->binomial(n,2*k+1)*2^k:for n from 1 to 15 do seq(T(n,k),k=0..floor((n-1)/2)) od; # yields sequence in triangular form
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x]
v[n_, x_] := u[n - 1, x] + v[n - 1, x]
Table[Factor[u[n, x]], {n, 1, z}]
Table[Factor[v[n, x]], {n, 1, z}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A207536 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A105070 *)
(* Clark Kimberling, Feb 18 2010 *)
Table[2^k*Binomial[n, 2*k+1], {n, 15}, {k,0,Floor[(n-1)/2]}]//Flatten (* G. C. Greubel, Mar 15 2020 *)
-
[[2^k*binomial(n,2*k+1) for k in (0..floor((n-1)/2))] for n in (1..15)] # G. C. Greubel, Mar 15 2020
A215936
a(n) = -2*a(n-1) + a(n-2) for n > 2, with a(0) = a(1) = 1, a(2) = 0.
Original entry on oeis.org
1, 1, 0, 1, -2, 5, -12, 29, -70, 169, -408, 985, -2378, 5741, -13860, 33461, -80782, 195025, -470832, 1136689, -2744210, 6625109, -15994428, 38613965, -93222358, 225058681, -543339720, 1311738121, -3166815962, 7645370045, -18457556052, 44560482149
Offset: 0
G.f. = 1 + x + x^3 - 2*x^4 + 5*x^5 - 12*x^6 + 29*x^7 - 70*x^8 + 169*x^9 - 408*x^10 + ...
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- M. C. Firengiz and A. Dil, Generalized Euler-Seidel method for second order recurrence relations, Notes on Number Theory and Discrete Mathematics, Vol. 20, 2014, No. 4, 21-32.
- Index entries for linear recurrences with constant coefficients, signature (-2,1).
-
[1,1] cat [n le 2 select (n-1) else -2*Self(n-1)+Self(n-2): n in [1..35] ]; // Vincenzo Librandi, Sep 09 2013
-
CoefficientList[Series[(1 + 3 x + x^2)/(1 + 2 x - x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 09 2013 *)
a[ n_] := With[ {m = If[ n < 1, 1 - n, n], s = If[ n < 1, (-1)^n, 1]}, s SeriesCoefficient[ x (1 + 2 x) / (1 + 2 x - x^2), {x, 0, m}]]; (* Michael Somos, Mar 19 2019 *)
-
{a(n) = my(m=n, s=1); if(n<1, m=1-n; s=(-1)^n); s * polcoeff( x * (1 + 2*x) / (1 + 2*x - x^2) + x * O(x^m), m)}; /* Michael Somos, Mar 19 2019 */
A055519
a(n) = 9*a(n-1) + 33*a(n-2) - 76*a(n-3) - 33*a(n-4) + 9*a(n-5) + a(n-6), a(0)=a(1)=1, a(2)=2, a(3)=35, a(4)=312, a(5)=3779.
Original entry on oeis.org
1, 1, 2, 35, 312, 3779, 41590, 474169, 5342808, 60450145, 682988978, 7720432691, 87256315920, 986227664411, 11146765278382, 125986353493225, 1423957841588232, 16094263592763889, 181905138292910570, 2055979904686591259, 23237679087969620328, 262643489044489470155
Offset: 0
-
LinearRecurrence[{9,33,-76,-33,9,1},{1,1,2,35,312,3779},20] (* Harvey P. Dale, Oct 20 2021 *)
Original entry on oeis.org
1, 1, 1, 2, 1, 2, 3, 2, 2, 5, 5, 3, 4, 5, 12, 8, 5, 6, 10, 12, 29, 13, 8, 10, 15, 24, 29, 70, 21, 13, 16, 25, 36, 58, 70, 169, 34, 21, 26, 40, 60, 87, 140, 169, 408, 55, 34, 42, 65, 96, 145, 210, 338, 408, 985
Offset: 1
First ten rows of the triangle T(n, m):
n \ m 1 2 3 4 5 6 7 8 9 10 ...
1: 1
2: 1 1
3: 2 1 2
4: 3 2 2 5
5: 5 3 4 5 12
6: 8 5 6 10 12 29
7: 13 8 10 15 24 29 70
8: 21 13 16 25 36 58 70 169
9: 34 21 26 40 60 87 140 169 408
10: 55 34 42 65 96 145 210 338 408 985
... reformatted by - _Wolfdieter Lang_, Apr 13 2021
Row 4 = (3, 2, 2, 5) = termwise products of (3, 2, 1, 1) and (1, 1, 2, 5).
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210; arXiv:math/0205301 [math.CO], 2002. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
A308940
Expansion of e.g.f. 1 / (1 - Sum_{k>=1} Fibonacci(k)*x^k/k!).
Original entry on oeis.org
1, 1, 3, 14, 85, 645, 5878, 62495, 759351, 10379878, 157652085, 2633903669, 48005235886, 947849607015, 20154635314591, 459170181891230, 11158379672316837, 288109467764819749, 7876576756719778854, 227299554620022188879, 6904560742996004248135
Offset: 0
-
nmax = 20; CoefficientList[Series[Sqrt[5]/(Sqrt[5] - 2 Exp[x/2] Sinh[Sqrt[5] x/2]), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] Fibonacci[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}]
A346631
Number of strongly asymmetric Boolean nested canalizing functions with n variables.
Original entry on oeis.org
4, 24, 240, 2880, 41760
Offset: 2
Comments from the Editors: It appears that this is essentially n!*
A163271(n) (see also
A052542), and also essentially 2*n!*
A000129(n) (see also
A215928). It also appears to match 2*
A052580.
Showing 1-8 of 8 results.
Comments